目的 探究基体表面粗糙度对Ti掺杂MoS2薄膜摩擦磨损性能的影响及其磨损机理,为后续2Cr13基体配磨副表面状态设计提供参考。方法 通过磁控溅射法在表面粗糙度(Ra)范围为0.2~0.7 μm的2Cr13基体表面制备Ti掺杂的MoS2薄膜,并在大气环境下进行干摩擦摩擦磨损实验。通过扫描电子显微镜、金相显微镜、能谱仪、白光干涉仪对实验后的薄膜磨痕形貌及对摩球的磨斑形貌进行观察分析。结果 通过分析基体粗糙度为0.2 μm的薄膜的磨痕表面形貌可知,主要为黏着磨损,其平均摩擦因数和对摩球磨斑面积最大,而其磨损率在所有试样中处于居中位置;当基体的粗糙度增至0.5~0.6 μm范围时,其平均摩擦因数、薄膜磨损率及对摩球磨斑面积都最小;当基体粗糙度进一步升至0.7 μm时,薄膜的磨损率(8.793 01× 10-7 mm3·N-1·m-1)最大,而其平均摩擦因数(0.092)较小,对摩球磨斑面积(4.125×104 μm2)略有升高,但比Ra 0.2 μm下的对摩球的磨斑面积小。结论 基于分子-机械摩擦理论,揭示了基体不同粗糙度对镀膜后表面摩擦磨损的影响机制,在低粗糙度(0.2 μm)下,分子间的作用力主导摩擦阻力,黏着磨损显著;在中粗糙度(0.4~0.6 μm),工件在不同摩擦阻力的作用下,其磨损机制为黏着磨损和磨粒磨损,其中Ra 0.4 μm的工件仍以黏着磨损为主。随着基体粗糙度的增加,Ra 0.6 μm工件表面的磨损机制逐渐转变为以磨粒磨损为主,在Ra 0.5~0.6 μm范围内制备的Ti掺杂MoS2薄膜展现出最优的综合性能;在高粗糙度(0.7 μm)下,由机械啮合阻力主导,薄膜磨损剧烈,磨损机制主要为磨粒磨损。在不同基体表面粗糙度状态下,薄膜的摩擦磨损机制存在显著差别,为提升以摩擦磨损性能为目标的基体表面状态提供了关键依据。
Abstract
To meet the technical requirements of high performance and prolonged service life for specialized lubricating films in extreme space environments, it is imperative to satisfy the tribological property criteria of substrate-coating systems on critical component surfaces. The surface topography of substrates constitutes a critical constraint restricting the enhancement of tribological properties through coating deposition. This study focuses on the significant influence of substrate roughness on the tribological behavior of MoS2-Ti composite coatings deposited on 2Cr13 stainless steel substrates. Through systematic investigation of the coefficient of friction (COF), wear rate, and wear mechanisms under varying surface roughness conditions, the variation in wear mechanisms associated with different substrate topographies are revealed. These findings establish theoretical foundations and engineering guidelines for surface pretreatment and lubrication design of aerospace precision moving components.
This study investigates how 2Cr13 substrate roughness (Ra 0.2-0.7 μm) affects Ti-MoS2 films prepared by magnetron sputtering (substrate preheating 200 °C, base vacuum 3 mPa) under dry sliding. Ball-on-disk tests (5 N load, 0.105 m/s) reveal three regimes: Ra 0.2 μm shows severe adhesion (μ=0.144), Ra 0.5-0.6 μm optimizes friction-wear balance (μ=0.077-0.101, 53% lower wear rate than Ra 0.7 μm), and Ra 0.7 μm causes abrasive damage (μ=0.092). SEM/EDS analysis demonstrates that Ra 0.5-0.6 μm reduces film wear by 40% vs Ra 0.2 μm through discontinuous transfer films. This study identifies Ra 0.5 μm as the optimal surface roughness parameter within the experimental design gradient (Ra 0.2-0.7 μm) for engineering 2Cr13 components with MoS2 films. Experimental results reveal three wear regimes governed by substrate topography. At Ra 0.2 μm, adhesive interactions is dominating, producing the highest friction coefficient (μ=0.144) and the maximum counterpart damage area (5.558×10-4 μm²). SEM-EDS analysis shows continuous transfer films containing 20.3% oxygen, matching oxidative adhesion mechanisms. White-light profilometry reveals shallow wear tracks with material pile-up near contact zones. At intermediate roughness levels (Ra 0.5-0.6 μm), friction coefficients decrease to 0.101-0.077, and film wear rate reaches the minimum (4.387 68×10-7 mm3·N-1·m-1). Reduced wear area (3.331×10-4 and 3.523×10-4 μm2) is linked to discontinuous transfer films, where MoS2 layers have the minimize shear stress. High roughness (Ra 0.7 μm) causes severe abrasive wear (wear rate 8.793 01× 10-7 mm3·N-1·m-1) but moderate friction (μ=0.092) due to debris-induced lubrication, with significant ploughing effects in wear scars. The molecular-mechanical friction theory explains these transitions, showing the balance between adhesive interactions and abrasive damage. For Ra 0.2 μm, the maximum contact area intensifies adhesion. Intermediate roughness optimizes asperity geometry, suppressing ploughing. White-light measurements show better film retention at Ra 0.5 μm than Ra 0.7 μm. At Ra 0.7 μm, sharp asperities generate abrasive debris that reduces friction via rolling mechanisms, evidenced by partial debris coverage in wear scars. This study identifies Ra 0.5 μm as the optimal surface roughness parameter (Ra 0.2-0.7 μm), demonstrating superior tribological properties with a 53% lower wear rate than Ra 0.7 μm and 40% reduced counterpart damage compared with Ra 0.2 μm. This is systematically validated through controlled tribological testing. Practical implementation protocols are developed through systematic parameter optimization, focusing on surface quality controls and performance validation criteria.
The methodology demonstrates that controlled substrate roughness enables regulation of adhesive-abrasive balance in solid lubricant systems, providing both fundamental insights into wear mechanism transitions. The methodology integrating substrate roughness control with multi-scale characterization provides practical engineering guidelines for optimizing solid lubricant performance in precision mechanical systems, particularly under dry sliding conditions. Experimental results confirm that optimal surface preparation achieves a 53% wear rate reduction and 40% smaller film wear compared with extreme roughness conditions, offering practical solutions for precision components requiring wear resistance enhancement.
关键词
基体表面粗糙度 /
Ti掺杂MoS2薄膜 /
2Cr13基体 /
摩擦磨损 /
磨损机制 /
干摩擦
Key words
substrate surface roughness /
Ti-doped MoS2 film /
2Cr13 substrate /
friction and wear /
wear mechanism /
dry friction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张斌, 吉利, 鲁志斌, 等. 工程导向固体超滑(超低摩擦)研究进展[J]. 摩擦学学报, 2023, 43(1): 3-17.
ZHANG B, JI L, LU Z B, et al.Progress on Engineering Oriented Solid Superlubricity[J]. Tribology, 2023, 43(1): 3-17.
[2] 张传香, 陈亚玲, 巩云, 等. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
ZHANG C X, CHEN Y L, GONG Y, et al.One-Step Hydrothermal Synthesis and Electrocatalytic Performance of MoS2/RGO Composites[J]. Journal of Materials Engineering, 2020, 48(5): 56-61.
[3] 陈爽, 王勇杰, 李仕华, 等. MoS2薄膜摩擦因数和磨损量的数学模型[J]. 表面技术, 2022, 51(3): 51-56.
CHEN S, WANG Y J, LI S H, et al.Mathematical Model of Friction Coefficient and Wear of MoS2 Film[J]. Surface Technology, 2022, 51(3): 51-56.
[4] 胡凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展[J]. 铸造技术, 2015, 36(10): 2394-2400.
HU K, WU M Y, LI Y G.Research Progress of Martensitic Stainless Steel[J]. Foundry Technology, 2015, 36(10): 2394-2400.
[5] 周晖, 桑瑞鹏, 温庆平, 等. 非平衡磁控溅射沉积MoS2-Ti复合薄膜的结构与真空摩擦磨损性能研究[J]. 摩擦学学报, 2009, 29(4): 374-378.
ZHOU H, SANG R P, WEN Q P, et al.Study of Structure and Tribological Properties in Vacuum of MoS2-Ti Composite Coatings Deposited by Unbalanced Magnetron Sputtering System[J]. Tribology, 2009, 29(4): 374-378.
[6] 柴利强, 张晓琴, 许佼, 等. MoS2基复合薄膜制备及其结构与摩擦学性能研究[J]. 摩擦学学报, 2016, 36(1): 1-6.
CHAI L Q, ZHANG X Q, XU J, et al.Preparation, Structure and Tribological Properties of MoS2 Based Composite Films[J]. Tribology, 2016, 36(1): 1-6.
[7] 徐昂, 刘瑞良. 马氏体不锈钢表面低温渗碳层腐蚀行为研究[J]. 热处理技术与装备, 2015, 36(5): 31-36.
XU A, LIU R L.Study on Corrosion Behavior of Low Temperature Carburized Layer on Martensitic Stainless Steel Surface[J]. Heat Treatment Technology and Equipment, 2015, 36(5): 31-36.
[8] 邢佳, 刘承志, 李爱民, 等. S31254超级奥氏体不锈钢高温氧化行为及涂层防护研究[J]. 包装工程, 2023, 44(7): 286-293.
XING J, LIU C Z, LI A M, et al.High-temperature Oxidation Behavior and Coating Protection of S31254 Super Austenitic Stainless Steel[J]. Packaging Engineering, 2023, 44(7): 286-293.
[9] 曾群锋, 董光能, 于飞, 等. Si3N4球/DLC膜摩擦副在真空环境下的摩擦学行为研究[J/OL]. 真空科学与技术学报, 2014, 34(11): 1184-1191.
ZENG Q F, DONG G N, YU F, et al.Tribological Property in Vacuum of High Speed Steel Modified with Diamond-Like-Carbon Coatings. Chinese Journal of Vacuum Science and Technology, 2014, 34(11), 1184-1191.
[10] HOLMBERG K, MATHEWS A.Coatings Tribology: A Concept, Critical Aspects and Future Directions[J]. Thin Solid Films, 1994, 253(1/2): 173-178.
[11] 陈爽, 韩雪艳, 安帅帅, 等. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
CHEN S, HAN X Y, AN S S, et al.Effect of Substrate Surface Roughness on Friction and Wear Properties of MoS2/Ti Films[J]. Journal of Materials Engineering, 2022, 50(8): 169-177.
[12] 李振东, 詹华, 王亦奇, 等. 干摩擦条件下基体粗糙度对Cr-DLC薄膜摩擦磨损性能的影响[J]. 摩擦学学报, 2016, 36(6): 741-748.
LI Z D, ZHAN H, WANG Y Q, et al.Effect of Substrate Roughness on Friction and Wear Properties of Cr-DLC Films under Dry-Sliding Condition[J]. Tribology, 2016, 36(6): 741-748.
[13] ROBERTS E W, WILLIAMS B J, OGILVY J A.The Effect of Substrate Surface Roughness on the Friction and Wear of Sputtered MoS2 Films[J]. Journal of Physics D: Applied Physics, 1992, 25(1A): A65-A70.
[14] CHEN H, WANG W L, LE K, et al.Effects of Substrate Roughness on the Tribological Properties of Duplex Plasma Nitrided and MoS2 Coated Ti6Al4V Alloy[J]. Tribology International, 2024, 191: 109123.
[15] 李忠建, 肖金涛, 鞠鹏飞, 等. 铝合金不同氧化处理工艺对其表面溅射MoS2膜层耐磨性的影响[J]. 表面技术, 2020, 49(12): 23-29.
LI Z J, XIAO J T, JU P F, et al.Effect of Different Aluminum Oxidation Treatments on Abrasion Resistance of MoS2 Film Prepared by Magnetron Sputtering[J]. Surface Technology, 2020, 49(12): 23-29.
[16] 董绍江, 程伟伦, 胡小林, 等. 空间滚动轴承MoS2薄膜三体接触摩擦分析[J]. 表面技术, 2023, 52(12): 343-350.
DONG S J, CHENG W L, HU X L, et al.Three-Body Contact Friction of MoS2 Thin Films in Space Rolling Bearings[J]. Surface Technology, 2023, 52(12): 343-350.
[17] 高贵, 李瑞红, 龚俊, 等. 对偶表面粗糙度对Nano-SiO2改性PTFE复合材料摩擦学性能的影响[J]. 工程科学与技术, 2020, 52(2): 207-214.
GAO G, LI R H, GONG J, et al.Effect of Counterpart Surface Roughness on the Tribological Properties of Nano-SiO2 Modified PTFE Composites[J]. Advanced Engineering Sciences, 2020, 52(2): 207-214.
[18] 刘秀芳, 罗鑫, 齐玉明, 等. MoS2/MAO耐磨减摩复合涂层的制备和摩擦学行为研究[J]. 表面技术, 2024, 53(11): 90-99.
LIU X F, LUO X, QI Y M, et al.Preparation and Tribological Behavior of the MoS2/MAO Wear-resistant and Anti-friction Composite Coating[J]. Surface Technology, 2024, 53(11): 90-99.
[19] 胡贇, 廖智忠, 易美荣. 二维纳米片状MoS2的制备及其作为润滑添加剂的减摩抗磨性能[J]. 表面技术, 2020, 49(9): 61-71.
HU Y, LIAO Z Z, YI M R.The Synthesis of Two- dimensional MoS2 Nanosheets and Their Friction-reducing and Anti-wear Properties as Lubricating Additives[J]. Surface Technology, 2020, 49(9): 61-71.
[20] 康皓, 郭鹏, 蔡胜, 等. MoS2/C复合薄膜多环境摩擦学行为的研究[J]. 表面技术, 2019, 48(6): 229-237.
KANG H, GUO P, CAI S, et al.Tribological Behavior of MoS2/C Composite Films in Multiple Environments[J]. Surface Technology, 2019, 48(6): 229-237.
[21] 土旗, 贺福强, 蔡家斌, 等. MoS2/Al薄膜涂层磨损性能研究[J]. 机械设计与制造, 2023(6): 139-143.
TU Q, HE F Q, CAI J B, et al.Investigation of Wear Performance of MoS2/Al Thin Film[J]. Machinery Design & Manufacture, 2023(6): 139-143.
[22] 卢金德, 韦春贝, 林松盛, 等. 磁控溅射NiCrAlY/MoS2复合薄膜结构与性能研究[J]. 表面技术, 2021, 50(5): 198-207.
LU J D, WEI C B, LIN S S, et al.Structure and Properties of NiCrAlY/MoS2 Composite Films Fabricated by Magnetron Sputtering[J]. Surface Technology, 2021, 50(5): 198-207.
[23] 冯兴国, 郑玉刚, 汪科良, 等. 不同摩擦副条件下二硫化钼薄膜的摩擦学性能研究[J]. 真空与低温, 2024, 30(1): 31-38.
FENG X G, ZHENG Y G, WANG K L, et al.Tribological Properties of MoS2-Ti Films Sliding Against Different Mating Materials in Dry Sliding[J]. Vacuum and Cryogenics, 2024, 30(1): 31-38.
[24] 高臻荣, 候果源, 任思明. MoS2/Ti-WC纳米多层薄膜结构设计及其宽温域摩擦性能研究[J]. 表面技术, 2024, 53(11): 80-89.
GAO Z R, HOU G Y, REN S M.Structure Design and Tribological Properties of MoS2/Ti-WC Nano-multilayer Films with Environmental Adaptability in Wide Temperature Range[J]. Surface Technology, 2024, 53(11): 80-89.
[25] CAI S, GUO P, LIU J Z, et al.Friction and Wear Mechanism of MoS2/C Composite Coatings under Atmospheric Environment[J]. Tribology Letters, 2017, 65(3): 79.
[26] 高雪, 吉利, 鞠鹏飞, 等. 纳米结构对二硫化钼摩擦学性能的影响[J]. 表面技术, 2020, 49(7): 133-140.
GAO X, JI L, JU P F, et al.Effect of Nanostructure on Tribological Properties of Molybdenum Disulfide[J]. Surface Technology, 2020, 49(7): 133-140.
基金
国家自然科学基金(52275453);上海市科委政府间国际合作项目(23190712100)