轮轨界面摩擦模型与黏着调控技术的研究进展

徐梦楠, 王文健, 宋辛辛, 程家豪, 张沭玥, 丁昊昊, 郭俊

表面技术 ›› 2025, Vol. 54 ›› Issue (13) : 1-15.

PDF(4065 KB)
PDF(4065 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (13) : 1-15. DOI: 10.16490/j.cnki.issn.1001-3660.2025.13.001
研究综述

轮轨界面摩擦模型与黏着调控技术的研究进展

  • 徐梦楠a, 王文健a,b*, 宋辛辛a, 程家豪a, 张沭玥a,b, 丁昊昊a,b, 郭俊a,b
作者信息 +

Research Progress on Friction Models of Wheel-rail Interface and Adhesion Control Technologies

  • XU Mengnana, WANG Wenjiana,b*, SONG Xinxina, CHENG Jiahaoa, ZHANG Shuyuea,b, DING Haohaoa,b, GUO Juna,b
Author information +
文章历史 +

摘要

轮轨黏着系数是列车牵引与制动性能的核心影响因素,针对基于轮轨界面摩擦模型的黏着计算和轮轨黏着调控技术进行深入研究,对于保障列车运行的安全、稳定与高效至关重要。全面综述了轮轨界面摩擦模型和黏着调控技术的研究进展。首先,阐述了轮轨黏着现象及其对列车运行的重要性,黏着系数过高或不足均会对列车性能产生不利影响。其次,回顾了轮轨界面摩擦因数模型的发展历程,从早期的库仑摩擦因数模型到更为复杂的衰减模型和大蠕滑摩擦因数模型,分析了各模型的优缺点及适用性。在黏着调控技术方面,重点介绍了机车防滑控制技术和撒砂增黏技术,探讨了其工作原理、应用效果及存在的问题。此外,展望了未来的研究方向,包括结合先进试验设备和方法深入探究大蠕滑黏着恢复机理,构建精准摩擦因数模型;高效利用车辆实时数据,持续提升黏着控制系统自适应性和鲁棒性,精细化撒砂增黏技术,优化撒砂装置和颗粒性能。旨在为相关科研人员和工程技术人员提供参考,推动轮轨黏着相关技术的发展,满足铁路运输日益增长的安全和效率需求。

Abstract

As the core factor affecting the traction and braking performance of trains, the in-depth research on the modeling and control technologies of the wheel/rail adhesion coefficient is of vital importance for ensuring the safety, stability and high efficiency of train operation. The work aims to comprehensively review the research progress of the wheel/rail adhesion coefficient modeling and control technologies.
Firstly, the wheel/rail adhesion phenomenon and its significance for train operation are expounded. Both excessively high and insufficient adhesion coefficients will have adverse effects on train performance. Secondly, the development history of the wheel/rail interface friction coefficient models is reviewed. From the early Coulomb friction coefficient model to the more complex attenuation models and large creep friction coefficient models, the large creep friction coefficient model can better fit the test results. However, the existing models still have limitations, such as being overly empirical, having insufficient understanding of the physical processes, failing to fully consider the impact of complex factors, and having limited universality and accuracy. In terms of the adhesion control technologies, the locomotive anti-slip control technology and the sanding enhanced adhesion technology are mainly introduced. The locomotive anti-slip control technology includes the re-adhesion control and the optimal adhesion control. The former has a fast response and mature technology, but its accuracy is not satisfactory under complex working conditions. Although the latter can explore the adhesion peak point to improve the utilization rate, its practical application faces problems such as difficulties in measuring the adhesion coefficient. Regarding the sanding enhanced adhesion technology, there are many research results in aspects such as the adhesion increasing mechanism, the effects under different media, the particle characteristics and the impact of sanding parameters. However, it is still necessary to finely regulate the sanding operation according to specific working conditions to achieve the best effect.
In the future, on the one hand, it is necessary to use advanced test equipment and methods to deeply explore the large creep adhesion recovery mechanism and build accurate friction coefficient models, strengthen the multi-physical field coupling numerical simulation and incorporate multiple factors into the models and use data-driven methods to mine the adhesion laws and combine intelligent algorithms to build adaptive wheel/rail adhesion models. On the other hand, there is a need to continuously improve the adaptability and robustness of the adhesion control system, integrate the wheel-rail dynamics models with real-time data to achieve efficient adhesion utilization and precise torque control, conduct in-depth research on the details of the sanding anti-slip technology and optimize the sanding devices and particle performance to ensure the stable operation of trains under complex working conditions. The study can provide references for relevant scientific researchers and engineering technicians, promote the continuous development of wheel/rail adhesion related technologies, and meet the growing safety and efficiency requirements of railway transportation.

关键词

轮轨黏着 / 摩擦因数模型 / 黏着调控 / 防滑控制 / 撒砂增黏

Key words

wheel/rail adhesion / friction coefficient model / adhesion control / anti-slip control / sanding enhanced adhesion

引用本文

导出引用
徐梦楠, 王文健, 宋辛辛, 程家豪, 张沭玥, 丁昊昊, 郭俊. 轮轨界面摩擦模型与黏着调控技术的研究进展[J]. 表面技术. 2025, 54(13): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.13.001
XU Mengnan, WANG Wenjian, SONG Xinxin, CHENG Jiahao, ZHANG Shuyue, DING Haohao, GUO Jun. Research Progress on Friction Models of Wheel-rail Interface and Adhesion Control Technologies[J]. Surface Technology. 2025, 54(13): 1-15 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.13.001
中图分类号: U211.5   

参考文献

[1] 王文健, 刘启跃. 轮轨黏着行为与增黏[M]. 北京: 科学出版社, 2017: 2-18.
WANG W J, LIU Q Y.Wheel-Rail Adhesion Behavior and Adhesion Enhancement[M]. Beijing: Science Press, 2017: 2-18.
[2] SHEN M X, LI J Q, LI L, et al.Adhesion and Damage Behaviour of Wheel-Rail Rolling-Sliding Contact Suffering Intermittent Airflow with Different Humidities and Ambient Temperatures[J]. Tribology Letters, 2024, 72(1): 18.
[3] 余启航, 李严, 彭雪峰, 等. 某微型齿轮机构的随机振动摩擦学试验研究[J]. 装备环境工程, 2023, 20(3): 99-107.
YU Q H, LI Y, PENG X F, et al.Random Vibration Running-in Method of a Micro-gear Mechanism[J]. Equipment Environmental Engineering, 2023, 20(3): 99-107.
[4] GAN W W, ZHAO X F, WEI D, et al.Research on the Identification of Nonlinear Wheel-Rail Adhesion Characteristics Model Parameters in Electric Traction System Based on the Improved TLBO Algorithm[J]. Electronics, 2024, 13(9): 1789.
[5] BAEK K S, KYOGOKU K, NAKAHARA T.An Experimental Investigation of Transient Traction Characteristics in Rolling-Sliding Wheel/Rail Contacts under Dry-Wet Conditions[J]. Wear, 2007, 263(1/2/3/4/5/6): 169-179.
[6] 金学松, 沈志云. 轮轨滚动接触力学的发展[J]. 力学进展, 2001, 31(1): 33-46.
JIN X S, SHEN Z Y.Development of Rolling Contact Mechanics of Wheel/Rail Systems[J]. Advances in Mechanics, 2001, 31(1): 33-46.
[7] OLOFSSON U, LYU Y Z.Open System Tribology in the Wheel-Rail Contact - A Literature Review[J]. Applied Mechanics Reviews, 2017, 69(6): 060803.
[8] VALENA M, OMASTA M, KVARDA D, et al.An Approach for the Creep-Curve Assessment Using a New Rail Tribometer[J]. Tribology International, 2024, 191: 109153.
[9] UYULAN C, GOKASAN M, BOGOSYAN S.Re-Adhesion Control Strategy Based on the Optimal Slip Velocity Seeking Method[J]. Journal of Modern Transportation, 2018, 26(1): 36-48.
[10] 文小康, 黄景春, 康灿. 基于模糊控制的电力机车智能撒砂控制方法[J]. 铁道科学与工程学报, 2019, 16(9): 2304-2311.
WEN X K, HUANG J C, KANG C.Intelligent Sanding Control Method for Electric Locomotive Based on Fuzzy Control[J]. Journal of Railway Science and Engineering, 2019, 16(9): 2304-2311.
[11] SHRESTHA S, WU Q, SPIRYAGIN M.Review of Adhesion Estimation Approaches for Rail Vehicles[J]. International Journal of Rail Transportation, 2019, 7(2): 79-102.
[12] 周嘉俊. 制动滑行工况下的黏着变化机理研究[D]. 上海: 同济大学, 2022: 6-20.
ZHOU J J.Study on Adhesion Change Mechanism under Braking Sliding Condition[D]. Shanghai: Tongji University, 2022: 6-20.
[13] 翟婉明, 金学松, 赵永翔. 高速铁路工程中若干典型力学问题[J]. 力学进展, 2010, 40(4): 358-374.
ZHAI W M, JIN X S, ZHAO Y X.Some Typical Mechanics Problems in High-Speed Railway Engineering[J]. Advances in Mechanics, 2010, 40(4): 358-374.
[14] 何成刚, 张佩祯, 邹港, 等. 自然环境条件下轮轨接触黏着特性研究进展[J]. 摩擦学学报, 2022, 42(3): 642-656.
HE C G, ZHANG P Z, ZOU G, et al.Research Progress on Wheel-Rail Contact Adhesion Characteristic under Environmental Conditions[J]. Tribology, 2022, 42(3): 642-656.
[15] 何静, 刘建华, 张昌凡. 重载机车轮轨黏着利用技术研究综述[J]. 铁道学报, 2018, 40(9): 30-39.
HE J, LIU J H, ZHANG C F.An Overview on Wheel-Rail Adhesion Utilization of Heavy-Haul Locomotive[J]. Journal of the China Railway Society, 2018, 40(9): 30-39.
[16] CATER F W.On the Action of a Locomotive Driving Wheel[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1926, 112(760): 151-157.
[17] VERMEULEN P J, JOHNSON K L.Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces[J]. Journal of Applied Mechanics, 1964, 31(2): 338.
[18] KALKER J J, JOHNSON K L.Three-Dimensional Elastic Bodies in Rolling Contact[M]. Kluwer Academic Publishers, 1990: 110-132.
[19] KALKER J J.Wheel-Rail Rolling Contact Theory[J]. Wear, 1991, 144(1/2): 243-261.
[20] CHEN H, BAN T, ISHIDA M, et al.Adhesion between Rail/Wheel under Water Lubricated Contact[J]. Wear, 2002, 253(1/2): 75-81.
[21] WANG H, WANG W J, LIU Q Y.Numerical and Experimental Investigation on Adhesion Characteristic of Wheel/Rail under the Third Body Condition[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230(1): 111-118.
[22] 吴兵, 陈铭, 吴涛, 等. 考虑热效应和轮轨微观粗糙度的高速黏着机理数值分析[J]. 铁道学报, 2020, 42(12): 42-49.
WU B, CHEN M, WU T, et al.Numerical Analysis of Wheel-Rail Adhesion Considering Thermal Effect and Micro Surface Roughness at High-Speed[J]. Journal of the China Railway Society, 2020, 42(12): 42-49.
[23] YUAN Z W, WU M L, TIAN C, et al.A Review on the Application of Friction Models in Wheel-Rail Adhesion Calculation[J]. Urban Rail Transit, 2021, 7(1): 1-11.
[24] KALKER J J, PIOTROWSKI J.Some New Results in Rolling Contact[J]. Vehicle System Dynamics, 1989, 18(4): 223-242.
[25] 袁泽旺. 考虑制动滑行的轮轨黏着模型研究[D]. 上海: 同济大学, 2022: 8-21.
YUAN Z W.Study on Wheel-Rail Adhesion Model Considering Braking Sliding[D]. Shanghai: Tongji University, 2022: 8-21.
[26] GIMÉNEZ J G, ALONSO A, GÓMEZ E. Introduction of a Friction Coefficient Dependent on the Slip in the FastSim Algorithm[J]. Vehicle System Dynamics, 2005, 43(4): 233-244.
[27] 陈厚嫦, 臧其吉, 陈泽深. 高速铁路列车轮轨粘着特性的理论探讨[J]. 铁道学报, 1998, 20(5): 28-34.
CHEN H C, ZANG Q J, CHEN Z S.Research on Theory of Wheel/Rail Adhesion for High Speed Railway[J]. Journal of the China Railway Society, 1998, 20(5): 28-34.
[28] 肖乾, 林凤涛, 王成国, 等. 变摩擦系数条件下的轮轨滚动接触特性分析[J]. 铁道学报, 2012, 34(6): 24-28.
XIAO Q, LIN F T, WANG C G, et al.Analysis on Wheel- Rail Rolling Contact Characteristics with Variable Friction Coefficient[J]. Journal of the China Railway Society, 2012, 34(6): 24-28.
[29] 张卫华, 周文祥, 陈良麒, 等. 高速轮轨粘着机理试验研究[J]. 铁道学报, 2000, 22(2): 20-25.
ZHANG W H, ZHOU W X, CHEN L Q, et al.Experiment Research on Wheel/Rail Adhesion Characteristics for High Speed Railway[J]. Journal of the China Railway Society, 2000, 22(2): 20-25.
[30] XIE G, ALLEN P D, LWNICKI S D, et al.Introduction of Falling Friction Coefficients into Curving Calculations for Studying Curve Squeal Noise[J]. Vehicle System Dynamics, 2006, 44(Sup. 1): 261-271.
[31] POLACH O.Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit[J]. Wear, 2005, 258(7/8): 992-1000.
[32] VOLLEBREGT E A H. Numerical Modeling of Measured Railway Creep Versus Creep-Force Curves with Contact[J]. Wear, 2014, 314(1/2): 87-95.
[33] ZHAO X, LI Z L.A Solution of Transient Rolling Contact with Velocity Dependent Friction by the Explicit Finite Element Method[J]. Engineering Computations, 2016, 33(4): 1033-1050.
[34] 安博洋, 马道林, 王平, 等. 函数型摩擦系数对轮轨滚动接触行为的影响分析[J]. 铁道学报, 2017, 39(7): 98-104.
AN B Y, MA D L, WANG P, et al.Study on Influence of Slip-Dependent Friction on Wheel/Rail Rolling Contact[J]. Journal of the China Railway Society, 2017, 39(7): 98-104.
[35] ZHOU J J, TIAN C, MA T H, et al.Mechanism of Wheel-Rail Adhesion Recovery during Large Sliding Processes under Water Lubrication Condition[J]. Tribology Transactions, 2024, 67(6): 1232-1251.
[36] ALLOTTA B, MELI E, RIDOLFI A, et al.Development of an Innovative Wheel-Rail Contact Model for the Analysis of Degraded Adhesion in Railway Systems[J]. Tribology International, 2014, 69: 128-140.
[37] MALVEZZI M, PUGI L, PAPINI S, et al.Identification of a Wheel-Rail Adhesion Coefficient from Experimental Data during Braking Tests[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227(2): 128-139.
[38] MEACCI M, SHI Z Y, BUTINI E, et al.A Railway Local Degraded Adhesion Model Including Variable Friction, Energy Dissipation and Adhesion Recovery[J]. Vehicle System Dynamics, 2021, 59(11): 1697-1718.
[39] ROVIRA A, RODA A, LEWIS R, et al.Application of Fastsim with Variable Coefficient of Friction Using Twin Disc Experimental Measurements[J]. Wear, 2012, 274: 109-126.
[40] VOLTR P, LATA M.Transient Wheel-Rail Adhesion Characteristics under the Cleaning Effect of Sliding[J]. Vehicle System Dynamics, 2015, 53(5): 605-618.
[41] CHANG C Y, CHEN B, CAI Y W, et al.Experimental Investigation of High-Speed Wheel-Rail Adhesion Characteristics under Large Creepage and Water Conditions[J]. Wear, 2024, 540: 205254.
[42] 任坤华, 黄双超, 耿辰, 等. 高速轮轨动态大蠕滑黏着行为试验初探[J]. 摩擦学学报, 2025, 45(9): 1-13.
REN K H, HUANG S C, GENG C, et al.Preliminary Experimental Study on Dynamic Wheel-rail Adhesion Behavior at Large Creepages and High Speeds[J]. Tribology, 2025, 45(9): 1-13.
[43] CHEN H, TANIMOTO H.Experimental Observation of Temperature and Surface Roughness Effects on Wheel/ Rail Adhesion in Wet Conditions[J]. International Journal of Rail Transportation, 2018, 6(2): 101-112.
[44] 黄启芮, 张沭玥, 王文健, 等. 钢轨轨面静电喷涂SiO2增黏颗粒行为与利用率研究[J]. 表面技术, 2023, 52(6): 196-207.
HUANG Q R, ZHANG S Y, WANG W J, et al.Behaviour and Utilization Rate of SiO2 Particles by Electrostatic Spraying on Rail Surface[J]. Surface Technology, 2023, 52(6): 196-207.
[45] 岳子恒, 张沭玥, 叶浩, 等. 硬质颗粒参数对列车增黏撒砂喷射行为的影响[J]. 中国机械工程, 2024, 35(11): 2054-2062.
YUE Z H, ZHANG S Y, YE H, et al.Influences of Hard Particle Parameters on Sanding Jetting Behaviors of Train Adhesion Enhancing[J]. China Mechanical Engineering, 2024, 35(11): 2054-2062.
[46] 李江红, 马健, 彭辉水. 机车粘着控制的基本原理和方法[J]. 机车电传动, 2002(6): 4-8.
LI J H, MA J, PENG H S.Basic Principle and Methods of Adhesion Control of Locomotive[J]. Electric Drive for Locomotive, 2002(6): 4-8.
[47] 胡亮. 高速列车牵引传动再黏着优化控制策略研究[D]. 北京: 北京交通大学, 2015: 10-18.
HU L.Research on Optimal Control Strategy of Traction Drive Reattachment of High-Speed Train[D]. Beijing: Beijing Jiaotong University, 2015: 10-18.
[48] CHEN Y, JING L, LI T, et al.Numerical Study of Wheel-Rail Adhesion Performance of New-Concept High-Speed Trains with Aerodynamic Wings[J]. Journal of Zhejiang University: Science A, 2023, 24(8): 673-691.
[49] PICHLÍK P, BAUER J. Analysis of the Locomotive Wheel Slip Controller Operation during Low Velocity[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1543-1552.
[50] 郭欣茹. 防滑控制策略对HXD1型机车轮轨滚动接触行为的影响分析[D]. 成都: 西南交通大学, 2022: 9-13.
GUO X R.Analysis of the Influence of Anti-Skid Control Strategy on the Rolling Contact Behavior of Wheel/Rail of HXD1 Locomotive[D]. Chengdu: Southwest Jiaotong University, 2022: 9-13.
[51] 高翔, 陆阳. 电力机车黏着控制研究[J]. 铁道机车车辆, 2017, 37(3): 35-39.
GAO X, LU Y.Study of the Locomotive Adhesion Control[J]. Railway Locomotive & Car, 2017, 37(3): 35-39.
[52] MICHIHIRO Y, LIU L J.Re-Adhesion Control Method for Improving Acceleration Performance[J]. Foreign Railway Locomotive and Motor Car, 2020(6): 45-48.
[53] 彭辉水, 李科. 地铁车辆防空转阈值动态调整方法及应用[J]. 机车电传动, 2020(3): 118-121.
PENG H S, LI K.Dynamic Adjustment Method of Threshold for Metro Vehicle Anti-Slip and Its Application[J]. Electric Drive for Locomotives, 2020(3): 118-121.
[54] FANG X C, LIN S, YANG Z P, et al.Adhesion Control Strategy Based on the Wheel-Rail Adhesion State Observation for High-Speed Trains[J]. Electronics, 2018, 7(5): 70.
[55] 朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021, 43(3): 34-41.
ZHU W L, ZHENG S B, WU N, et al.Improved Model for Degraded Wheel-Rail Adhesion under Braking Conditions[J]. Journal of the China Railway Society, 2021, 43(3): 34-41.
[56] YANG Y F, LING L, ZHANG T, et al.An Advanced Antislip Control Algorithm for Locomotives under Complex Friction Conditions[J]. Journal of Computational and Nonlinear Dynamics, 2021, 16(10): 101004.
[57] CHEN P W, ZHU W L, YU C G, et al.Research on Train Braking Model by Improved Polach Model Considering Wheel-Rail Adhesion Characteristics[J]. IET Intelligent Transport Systems, 2023, 17(12): 2432-2443.
[58] HONG X, ZHANG R H, WU L, et al.Simulation of Adhesion Control Method Based on Phase-Shift[C] // 2013 International Conference on Electrical Machines and Systems. IEEE, 2013: 2077-2080.
[59] YAO X M, ZHAO B Y, LI S H.Disturbance Observer- Based Tracking Control of High-Speed Trains under Adhesion Dynamics[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 1727-1739.
[60] ZHAO K H, LI P, ZHANG C F, et al.Online Accurate Estimation of the Wheel-Rail Adhesion Coefficient and Optimal Adhesion Antiskid Control of Heavy-Haul Electric Locomotives Based on Asymmetric Barrier Lyapunov Function[J]. Journal of Sensors, 2018, 2018(1): 2740679.
[61] ZIREK A, VOLTR P, LATA M, et al.An Adaptive Sliding Mode Control to Stabilize Wheel Slip and Improve Traction Performance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2392-2405.
[62] ABOUZEID A F, GUERRERO J M, LEJARZA- LASUEN L, et al.Advanced Maximum Adhesion Tracking Strategies in Railway Traction Drives[J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 3645-3660.
[63] 胡胜, 丁健斌, 贺岚晴, 等. 基于改进PSO-LSTM的列车空转预警模型研究[J]. 大连交通大学学报, 2024, 45(5): 53-60.
HU S, DING J B, HE L Q, et al.Research on Train Idling Warning Model Based on Improved PSO-LSTM[J]. Journal of Dalian Jiaotong University, 2024, 45(5): 53-60.
[64] PICHLÍK P, BAUER J. Adhesion Characteristic Slope Estimation for Wheel Slip Control Purpose Based on UKF[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4303-4311.
[65] 胡淼, 王善方, 董光进, 等. 我国高速动车组撒砂装置现状及发展趋势[J]. 铁道车辆, 2024, 62(1): 157-160.
HU M, WANG S F, DONG G J, et al.Current Situation and Development Trend of the Sanding Device for High-Speed EMU of China[J]. Rolling Stock, 2024, 62(1): 157-160.
[66] LIGHTOLLER A, PURCELL L.Low Adhesion and Sanders[J]. Permanent Way Institution Journal, 2020, 138(3): 28-32.
[67] ZHANG B, NADIMI S, LEWIS R.Modelling the Adhesion Enhancement Induced by Sand Particle Breakage at the Wheel-Rail Interface[J]. Wear, 2024, 538: 205232.
[68] HUANG W L, CAO X, WEN Z F, et al.A Subscale Experimental Investigation on the Influence of Sanding on Adhesion and Rolling Contact Fatigue of Wheel/Rail under Water Condition[J]. Journal of Tribology, 2017, 139(1): 011401.
[69] 孙琼, 臧其吉. 喷撒颗粒的增粘机理研究[J]. 中国铁道科学, 2000, 21(4): 44-50.
SUN Q, ZANG Q J.On Mechanism of Improving Wheel/Rail Adhesion by Way of Spraying Granules[J]. China Railway Science, 2000, 21(4): 44-50.
[70] ARIAS-CUEVAS O, LI Z, LEWIS R, et al.Laboratory Investigation of Some Sanding Parameters to Improve the Adhesion in Leaf-Contaminated Wheel-Rail Contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(3): 139-157.
[71] ARIAS-CUEVAS O, LI Z.Field Investigations into the Adhesion Recovery in Leaf-Contaminated Wheel-Rail Contacts with Locomotive Sanders[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(5): 443-456.
[72] OMASTA M, MACHATKA M, SMEJKAL D, et al.Influence of Sanding Parameters on Adhesion Recovery in Contaminated Wheel-Rail Contact[J]. Wear, 2015, 322: 218-225.
[73] WANG W J, ZHANG H F, WANG H Y, et al.Study on the Adhesion Behavior of Wheel/Rail under Oil, Water and Sanding Conditions[J]. Wear, 2011, 271(9/10): 2693-2698.
[74] ARIAS-CUEVAS O, LI Z L, LEWIS R.A Laboratory Investigation on the Influence of the Particle Size and Slip during Sanding on the Adhesion and Wear in the Wheel- Rail Contact[J]. Wear, 2011, 271(1/2): 14-24.
[75] 师陆冰. 轮轨界面硬质颗粒增黏与损伤行为研究[D]. 成都: 西南交通大学, 2020: 78-81.
SHI L B.Study on Adhesion and Damage Behavior of Hard Particles at Wheel-Rail Interface[D]. Chengdu: Southwest Jiaotong University, 2020: 78-81.
[76] WANG C, SHI L B, DING H H, et al.Adhesion and Damage Characteristics of Wheel/Rail Using Different Mineral Particles as Adhesion Enhancers[J]. Wear, 2021, 477: 203796.
[77] 大野薰, 林航空. 增粘材料喷射装置(喷砂器)[J]. 国外内燃机车, 2007(2): 11-14.
OHNO K, LIN H K.Tackifying Material Spraying Device (Sand Blaster)[J]. Foreign Diesel Locomotive, 2007(2): 11-14.
[78] 刘腾飞, 王文健, 郭火明, 等. 不同介质对轮轨增黏与磨损特性影响[J]. 摩擦学学报, 2014, 34(2): 153-159.
LIU T F, WANG W J, GUO H M, et al.Effect of Medium on Improving Adhesion and Wear Characteristics of Wheel/Rail[J]. Tribology, 2014, 34(2): 153-159.
[79] LEWIS S R, RILEY S, FLETCHER D I, et al.Optimisation of a Railway Sanding System for Optimal Grain Entrainment into the Wheel-Rail Contact[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(1): 43-62.
[80] 申鹏, 王文健, 张鸿斐, 等. 撒砂对轮轨粘着特性的影响[J]. 机械工程学报, 2010, 46(16): 74-78.
SHEN P, WANG W J, ZHANG H F, et al.Effect of Spraying Sand on Adhesion Characteristic of Wheel/ Rail[J]. Journal of Mechanical Engineering, 2010, 46(16): 74-78.
[81] 王文健, 岳子恒, 向鹏程, 等. 列车轮轨增黏撒砂过程试验模拟与撒砂效果研究[J]. 机械工程学报, 2023, 59(22): 424-432.
WANG W J, YUE Z H, XIANG P C, et al.Study on Experimental Simulation of Sanding Process for Train Wheel-Rail Improving Adhesion and Sanding Effect[J]. Journal of Mechanical Engineering, 2023, 59(22): 424-432.
[82] YUE Z H, ZHANG S Y, DING H H, et al.Experimental Study on the Influencing Factors of Particles Jetting Behavior in Train Sanding Adhesion Enhancement[J]. Powder Technology, 2024, 448: 120302.

基金

国家自然科学基金(52320105007,52272443,52435004);轨道交通运载系统全国重点实验室自主研究课题(2024RVL-T02);中央高校基本科研业务费专项资金(2682024CG007)

PDF(4065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/