精密谐振器件表面导电层原子层沉积制备技术研究

龚婷, 冯昊

表面技术 ›› 2025, Vol. 54 ›› Issue (12) : 175-185.

PDF(3850 KB)
PDF(3850 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (12) : 175-185. DOI: 10.16490/j.cnki.issn.1001-3660.2025.12.016
表面功能化

精密谐振器件表面导电层原子层沉积制备技术研究

  • 龚婷, 冯昊*
作者信息 +

Atomic Layer Deposition Technology for Surface Conductive Layers of Precision Resonant Devices

  • GONG Ting, FENG Hao*
Author information +
文章历史 +

摘要

目的 利用原子层沉积(ALD)技术在半球陀螺谐振子表面制备Pt导电层。方法 以ALD制备的氧化物/金属薄膜为谐振子过渡层,再沉积Pt为导电层。椭圆偏振光谱仪(SE)用于测试薄膜厚度。利用X-射线光电子能谱(XPS)、掠入射X-射线衍射(GIXRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)分析薄膜组成、晶型、形貌及粗糙度。采用聚焦离子束-透射电子显微镜(FIB-TEM)结合能量色散X射线元素面分布(EDX-mapping)、线扫描分布谱揭示膜层微观结构。采用电子万能试验机测试薄膜和石英片的界面结合强度。结果 SE测试结果表明,Pt/氧化物薄膜体系的Pt平均厚度为123 Å,不均匀度仅为1.6%,Pt/金属薄膜体系的Pt平均厚度为155 Å,不均匀度为4%。XPS显示Pt薄膜主要成分由零价Pt构成,XRD检测到在2θ=39.8°处存在明显的Pt(111)衍射峰。SEM观测到薄膜表面Pt纳米颗粒分布均匀。AFM进一步揭示金属及Pt/金属薄膜粗糙度分别为1.47 nm和0.99 nm。FIB-TEM、EDX-mapping及线扫描分布谱结果表明Pt/氧化物和Pt/金属厚度均匀、致密,膜层界面的元素相互扩散。力学测试显示,氧化物过渡层使界面结合强度提升至7.1 MPa,较无过渡层体系(3.0 MPa)提高1.37倍;金属过渡层体系结合强度最高可达8.4 MPa。结论 ALD技术可以实现半球陀螺谐振子表面高均匀性、高结合强度的Pt薄膜制备。

Abstract

The Pt conductive layer is prepared on the surface of the hemispherical gyroscope resonator by the atomic layer deposition (ALD) technology to improve the uniformity and bonding strength of the Pt thin film.
The oxide/metal thin films, fabricated through ALD, are employed as transition layers for the hemispherical resonator gyroscopes, followed by the deposition of Pt as the conductive layer. To assess the uniformity of the Pt films, a silicon wafer attachment test is designed to simulate the structural characteristics of a hemispherical harmonic oscillator, while spectroscopic ellipsometry (SE) is employed to measure the film thickness. Comprehensive characterization of the films is conducted using advanced analytical techniques: X-ray photoelectron spectroscopy (XPS) is utilized to determine the chemical composition and oxidation state of the films; Grazing-incidence X-ray diffraction (GIXRD) provides insights into the crystallographic orientation and phase purity; A scanning electron microscopy (SEM) and an atomic force microscopy (AFM) are employed to examine surface morphology and quantify roughness parameters of the films. The microstructure, elemental distribution, and interfacial characteristics of the film layers are investigated by focused ion beam-transmission electron microscopy (FIB-TEM) combined with an energy-dispersive X-ray elemental mapping (EDX-mapping) and line scan spectroscopy. The interfacial bonding strength between the Pt/oxide and Pt/metal thin films and quartz substrates is evaluated with an electronic universal testing machine.
SE analysis demonstrates that the Pt/oxide thin film system achieves exceptional thickness uniformity, with an average Pt layer thickness of 123.0 Å and a remarkably low non-uniformity of 1.6%. The Pt/metal system demonstrates a slightly higher average thickness of 155.0 Å, accompanied by a non-uniformity value of 4%. SEM characterization reveals that both Pt/oxide and Pt/metal thin films exhibit uniform nanoparticle distribution across their surfaces, without observable pore defects, confirming the defect-free morphology enabled by the ALD process. AFM further quantifies the surface roughness, showing values of 1.47 nm for the metal transition layer and 0.99 nm for the Pt/metal composite film. XPS analysis conclusively identifies that the ALD-synthesized Pt films are predominantly composed of metallic Pt in the zero-valent state, without detectable impurities or oxidized species. Structural characterization via XRD reveals a prominent Pt(111) diffraction peak at 2θ = 39.8°, confirming the face-centered cubic crystalline structure of the deposited Pt. FIB-TEM cross-sectional imaging, complemented by EDX-mapping, further corroborates the uniformity and density of both Pt/oxide and Pt/metal films. Critically, elemental line scans across the interfaces demonstrate mutual diffusion between Pt and constituent elements of the transition layers, indicative of robust interfacial interactions. Mechanical evaluation reveals significant enhancements in bonding performance: the oxide transition layer system achieves an interfacial bonding strength of 7.1 MPa, representing a 1.37-fold improvement over the non-transition-layer reference system (3.0 MPa). The Pt/metal system surpasses this performance, attaining a maximum bonding strength of 8.4 MPa.
By implementing ALD-engineered transition layers, this study successfully realizes the fabrication of Pt films with exceptional uniformity and robust interfacial adhesion on hemispherical resonators. The interdiffusion behavior between Pt and transition layer elements significantly enhances interfacial bonding strength. This methodology provides technical support for the precision manufacturing of highly reliable resonant devices, offering a scalable solution for next-generation inertial navigation systems.

关键词

半球陀螺谐振子 / 原子层沉积 / Pt薄膜 / 过渡层 / 均匀性 / 结合强度

Key words

hemispherical gyroscope harmonic oscillator / atomic layer deposition / Pt film / transition layer / uniformity / bonding strength

引用本文

导出引用
龚婷, 冯昊. 精密谐振器件表面导电层原子层沉积制备技术研究[J]. 表面技术. 2025, 54(12): 175-185 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.016
GONG Ting, FENG Hao. Atomic Layer Deposition Technology for Surface Conductive Layers of Precision Resonant Devices[J]. Surface Technology. 2025, 54(12): 175-185 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.016
中图分类号: TG174   

参考文献

[1] 樊尚春, 王振均, 刘广玉. 谐振陀螺及半球壳谐振子陀螺仪[J]. 北京航空航天大学学报, 1989, 15(4): 33-39.
FAN S C, WANG Z J, LIU G Y.Vibrating Gyro and Hemispherical Resonator Gyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 1989, 15(4): 33-39.
[2] 贾智学, 付丽萍, 任佳婧. 半球谐振陀螺技术发展趋势[J]. 导航与控制, 2018, 17(3): 83-87.
JIA Z X, FU L P, REN J J.Development Trend of Hemispheric Resonant Gyroscope[J]. Navigation and Control, 2018, 17(3): 83-87.
[3] 毛海燕, 梁宇, 袁小平, 等. 半球谐振陀螺现状及发展趋势[J]. 压电与声光, 2014, 36(4): 584-587.
MAO H Y, LIANG Y, YUAN X P, et al.The Current Status and Future Trends of HRG[J]. Piezoelectrics & Acoustooptics, 2014, 36(4): 584-587.
[4] 彭慧, 方针, 谭文跃, 等. 半球谐振陀螺发展的技术特征[J]. 导航定位与授时, 2019, 6(4): 108-114.
PENG H, FANG Z, TAN W Y, et al.The Technical Characteristics of Hemispherical Resonator Gyro Development[J]. Navigation Positioning and Timing, 2019, 6(4): 108-114.
[5] 薛连莉, 翟峻仪, 葛悦涛. 2020年国外惯性技术发展与回顾[J]. 导航定位与授时, 2021, 8(3): 59-67.
XUE L L, ZHAI J Y, GE Y T.Development and Review of Foreign Inertial Technology in 2020[J]. Navigation Positioning and Timing, 2021, 8(3): 59-67.
[6] 曲天良. 半球谐振陀螺研究现状、关键技术和发展趋势分析[J]. 光学与光电技术, 2022, 20(2): 1-16.
QU T L.Review on the Current Advances, Key Technology and Future Trends of Hemispherical Resonator Gyroscope[J]. Optics & Optoelectronic Technology, 2022, 20(2): 1-16.
[7] 徐志强, 刘建梅, 王振, 等. 石英半球谐振子精密加工技术探讨[J]. 导航与控制, 2019, 18(2): 69-76.
XU Z Q, LIU J M, WANG Z, et al.Discussion on Precision Machining Technology of Quartz Hemispherical Harmonic Oscillator[J]. Navigation and Control, 2019, 18(2): 69-76.
[8] 刘付成, 赵万良, 杨浩, 等. 半球谐振陀螺技术[J]. 导航与控制, 2020, 19(S1): 208-215.
LIU F C, ZHAO W L, YANG H, et al.Hemispherical Resonant Gyro Technology[J]. Navigation and Control, 2020, 19(S1): 208-215.
[9] ROZELLE D M.The Hemispherical Resonator Gyro: From Wineglass to the Planets[C]// Proceedings of the 19th AAS/AIAA Space Flight Mechanics Meeting. Reston: AIAA, 2009: 1157-1178.
[10] MASLOV A A, MASLOV D A, NINALALOV I G, et al.Hemispherical Resonator Gyros (an Overview of Publications)[J]. Gyroscopy and Navigation, 2023, 14(1): 1-13.
[11] 卢宁·鲍里斯·谢尔盖耶维奇, 马特维耶夫·瓦列里·阿列克桑德洛维奇, 巴萨拉布·米哈伊尔·阿列克谢耶维克. 固体波动陀螺理论与技术[M]. 北京: 国防工业出版社, 2020: 57-61.
ЛУНИН Б С, MАТВЕЕВ В, А, БАСАРАБ М А. Theory and Technology of Solid Wave Gyroscopes[M]. Beijing: National Defense Industry Press, 2020: 57-61.
[12] 刘付成, 赵万良, 宋丽君. 半球谐振陀螺惯性敏感器及其空间应用[M]. 北京: 中国宇航出版社, 2019: 41-43.
LIU F C, ZHAO W L, SONG L J.Inertial Sensor of Hemispherical Resonator Gyro and Its Space Application [M]. Beijing: China Astronautics Publishing House, 2019: 41-43.
[13] 张挺, 徐思宇, 冒继明, 等. 半球陀螺谐振子的金属化镀膜工艺技术研究[J]. 压电与声光, 2006, 28(5): 538-540.
ZHANG T, XU S Y, MAO J M, et al.Study on Metallic Coating Technique of the Hemis-Pherical Resonator[J]. Piezoelectrics & Acoustooptics, 2006, 28(5): 538-540.
[14] 李维源, 朱蓓蓓, 孙权权, 等. 基于电子束蒸发沉积的曲面纳米薄膜均匀性研究[J]. 飞控与探测, 2019, 2(2): 64-70.
LI W Y, ZHU B B, SUN Q Q, et al.Uniformity of Curved Nano-Films Based on Electron Beam Evaporation Deposition[J]. Flight Control & Detection, 2019, 2(2): 64-70.
[15] 倪昌. 半球谐振子金属化镀膜工艺与关键特性研究[D]. 武汉: 华中科技大学, 2021: 37.
NI C.Study on Metallization Coating Technology and Key Characteristics of Hemispherical Harmonic Oscillator [D]. Wuhan: Huazhong University of Science and Technology, 2021: 37.
[16] 秦琳, 朱蓓蓓, 兰洁, 等. 半球谐振子低阻尼损耗金属化薄膜制备研究[J]. 航天制造技术, 2022(5): 37-40.
QIN L, ZHU B B, LAN J, et al.Preparation of Low Damping Loss Metalized Thin Films for Hemispherical Fesonators[J]. Aerospace Manufacturing Technology, 2022(5): 37-40.
[17] 孙婧晗. 半球谐振子金属化镀膜残余应力与膜厚均匀性研究[D]. 武汉: 华中科技大学, 2019: 15-16.
SUN J H.Study on Residual Stress and Film Thickness Uniformity of Metallized Coating of Hemispherical Harmonic Oscillator[D]. Wuhan: Huazhong University of Science and Technology, 2019: 15-16.
[18] GEORGE M A, GLAUNSINGER W S, THUNDAT T, et al.Electrical, Spectroscopic, and Morphological Investigation of Chromium Diffusion through Gold Films[J]. Thin Solid Films, 1990, 189(1): 59-72.
[19] NAGOURNEY T, CHO J Y, DARVISHIAN A, et al.Effect of Metal Annealing on the Q-Factor of Metal- Coated Fused Silica Micro Shell Resonators[C]//2015 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) Proceedings. Hapuna Beach, HI, USA. IEEE, 2015: 1-5.
[20] GEORGE S M.Atomic Layer Deposition: An Overview[J]. Chemical Reviews, 2010, 110(1): 111-131.
[21] GONG T, QIN L J, HU Y Y, et al.Growth Characteristics and Properties of RuAlO Hybrid Films Fabricated by Atomic Layer Deposition[J]. Applied Surface Science, 2023, 608: 155200.
[22] HU Y Y, LU J, FENG H.Surface Modification and Functionalization of Powder Materials by Atomic Layer Deposition: A Review[J]. RSC Advances, 2021, 11(20): 11918-11942.
[23] LI J G, AN Z W, ZHANG W L, et al.Thermochromatic Vanadium Dioxide (VO2) Thin Films Synthesized by Atomic Layer Deposition and Post-Treatments[J]. Applied Surface Science, 2020, 529: 147108.
[24] ZHANG W L, LI J G, FANG J B, et al.Atomic Layer Deposited High Quality AlN Thin Films for Efficient Thermal Management[J]. Journal of Materials Chemistry A, 2023, 11(40): 21846-21856.
[25] GRAY J M, HOULTON J P, GERTSCH J C, et al.Hemispherical Micro-Resonators from Atomic Layer Deposition[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125028.
[26] GINER J, GRAY J M, GERTSCH J, et al.Design, Fabrication, and Characterization of a Micromachined Glass-Blown Spherical Resonator with Insitu Integrated Silicon Electrodes and ALD Tungsten Interior Coating[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril, Portugal. IEEE, 2015: 805-808.
[27] SHAO P, TAVASSOLI V, LIU C S, et al.Electrical Characterization of ALD-Coated Silicon Dioxide Micro- Hemispherical Shell Resonators[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco, CA, USA. IEEE, 2014: 612-615.
[28] LEE H B R, PICKRAHN K L, BENT S F. Effect of O3 on Growth of Pt by Atomic Layer Deposition[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12325-12332.
[29] DENDOOVEN J, RAMACHANDRAN R K, DEVLOO-CASIER K, et al.Low-Temperature Atomic Layer Deposition of Platinum Using (Methylcyclopentadienyl) Trimethylplatinum and Ozone[J]. The Journal of Physical Chemistry C, 2013, 117(40): 20557-20561.
[30] CHRISTENSEN S T, ELAM J W.Atomic Layer Deposition of Ir-Pt Alloy Films[J]. Chemistry of Materials, 2010, 22(8): 2517-2525.
[31] 热喷涂涂层结合强度试验方法: HB5476—1991[S].
Test method for bonding strength of thermal spray coatings: HB5476—1991[S].
[32] KÄÄRIÄINEN T O, CAMERON D C, TANTTARI M. Adhesion of Ti and TiC Coatings on PMMA Subject to Plasma Treatment: Effect of Intermediate Layers of Al2O3 and TiO2 Deposited by Atomic Layer Deposition[J]. Plasma Processes and Polymers, 2009, 6(10): 631-641.
[33] DE PAULA C, RICHEY N E, ZENG L, et al.Mechanistic Study of Nucleation Enhancement in Atomic Layer Deposition by Pretreatment with Small Organometallic Molecules[J]. Chemistry of Materials, 2020, 32(1): 315-325.
[34] HSIEH C T, LIU Y Y, TZOU D Y, et al.Atomic Layer Deposition of Platinum Nanocatalysts Onto Three- Dimensional Carbon Nanotube/Graphene Hybrid[J]. The Journal of Physical Chemistry C, 2012, 116(51): 26735-26743.
[35] DING S J, CHEN H B, CUI X M, et al.Atomic Layer Deposition of High-Density Pt Nanodots on Al2O3 Film Using (MeCp)Pt(Me)3 and O2 Precursors for Nonvolatile Memory Applications[J]. Nanoscale Research Letters, 2013, 8(1): 80.
[36] PHILIBERT J.Reactive Diffusion in Thin Films[J]. Applied Surface Science, 1991, 53: 74-81.
[37] CHAKRABORTY J, WELZEL U, MITTEMEIJER E J.Mechanisms of Interdiffusion in Pd-Cu Thin Film Diffusion Couples[J]. Thin Solid Films, 2010, 518(8): 2010-2020.
[38] YANG J J, STRACHAN J P, XIA Q F, et al.Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching[J]. Advanced Materials, 2010, 22(36): 4034-4038.
[39] ABE N, OTANI Y, MIYAKE M, et al.Influence of a TiO2Adhesion Layer on the Structure and the Orientation of a Pt Layer in Pt/TiO2/SiO2/Si Structures[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 5A): 2791-2795.
[40] JIN J F, LV L, LI Y, et al.Influence of TiOx and TaOx Adhesion Layers on the Properties of Pt Films[J]. Vacuum, 2024, 222: 113084.
[41] CHEN W, WANG P, CUI Q, et al.Effect of Titanium Adhesion Layer on the Thermal Stability of Platinum Films During Vacuum High Temperature Treatment[J]. Vacuum, 2024, 226: 113295.

PDF(3850 KB)

Accesses

Citation

Detail

段落导航
相关文章

/