目的 通过降低热应力的方式,解决刀具CVD金刚石涂层在切削过程中易脱落的问题。方法 使用热致相变材料VO2作为硬质合金刀具与CVD金刚石涂层的中间层。建立M相VO2 (333)晶胞模型和VO2/金刚石涂层体系模型,采用分子动力学模拟的方法,模拟VO2的相变过程并计算升温过程中涂层体系的热应力变化情况。制备了VO2/CVD金刚石涂层,使用X射线应力分析仪对升温过程中的涂层应力变化进行实时测量。结果 建立的VO2模型在330 K附近发生相变,体系能量突变,内部原子位置发生变化。仿真结果显示,VO2/金刚石界面模型热应力在323.15~373.15 K发生突变,涂层应力降低约400 MPa;试验结果显示,涂层VO2在323.15~328.15 K发生突变,热应力降低约300 MPa,VO2的相变温度和应力调控的试验结果与仿真结果趋势一致。结论 加入VO2中间层可降低CVD金刚石涂层的热应力,对提高刀具CVD金刚石涂层抗剥落能力具有重要意义。
Abstract
This study aims to reduce thermal stress with the thermotropic phase change material (PCM) VO2 as an interlayer, to address the issue of easy detachment of CVD diamond coatings on cutting tools during the cutting process. To investigate the regulating effect of VO2 on the thermal stress of CVD diamond coatings, molecular dynamics simulations are employed. A 3×3×3 supercell model of the M-phase VO2 is established to simulate the phase transition process and calculate the phase transition temperature of the VO2 model. Subsequently, a VO2/diamond layer model is constructed, and the thermal stress within the layer model is calculated over a temperature range of 273.15 K to 523.15 K, yielding a temperature-stress curve for the VO2/diamond layer model. The simulation results indicated that the established VO2 model undergoes a phase transition at approximately 330 K, accompanied by a sudden change in the total system energy and a shift in internal atomic positions. This suggests that the VO2 model undergoes structural changes near the phase transition temperature, demonstrating its thermotropic phase change capability. As the temperature increases, the thermal stress in the VO2/diamond layer model gradually increases. However, near 373.15 K, the system stress abruptly decreases by approximately 400 MPa. Considering that the VO2 supercell model undergoes a phase transition around 330 K, it can be inferred that the sudden stress drop is attributed to the phase transition of VO2. After reaching the phase transition temperature, the atomic positions within VO2 change, leading to a reduction in internal stress. The VO2 films are prepared on YG8 cemented carbide substrates through PVD magnetron sputtering system, followed by the deposition of a CVD diamond coating by HFCVD to form the VO2/diamond coating system. An X-ray stress analyzer is employed to measure the stress changes in the coating system during heating. The experimental results show that at an initial temperature of 303.15 K, the initial stress in the VO2/CVD diamond coating is approximately 600 MPa lower than that of the CVD diamond coating used as a control group. As the system temperature increases, the thermal stress in the VO2/CVD diamond coating system undergoes a sudden change between 323.15 K and 328.15 K, with a stress reduction of approximately 300 MPa. The experimental results regarding the phase transition temperature and stress regulation capability of VO2 are consistent with the simulation trends. The VO2 interlayer can reduce the initial thermal stress of the system and undergo a phase transition during heating, effectively lowering the thermal stress in the CVD diamond coating system, which is significant for enhancing the anti-spalling properties of CVD diamond coatings on cemented carbide cutting tools.
关键词
CVD金刚石涂层 /
VO2 /
热应力 /
热致相变材料 /
调节
Key words
CVD diamond coating /
VO2 /
thermal stress /
thermotropic PCM /
regulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾芳芳, 邱联昌, 吴立颖, 等. 化学气相沉积制备硬质合金刀具涂层研究进展[J]. 表面技术, 2023, 52(8): 1-26.
ZENG F F, QIU L C, WU L Y, et al.Progress in Cemented Carbide Cutting Tools Coating by Chemical Vapor Deposition[J]. Surface Technology, 2023, 52(8): 1-26.
[2] LU F, HAO T E, BAI X, et al.Research on the Innovative Pretreatment to Improve the Adhesion and Performance of Diamond Coatings[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2022, 30(10): 1002-1010.
[3] HAO C, DENG F M, GUO Z H, et al.Study of Preparation and Cutting Performance of a Chemical Vapor Deposition Diamond Coated Cutting Tool[J]. Thin Solid Films, 2023, 771: 139801.
[4] HAO C, DU Q B, DENG F M, et al.Effects of Hydrogen Plasma Etching on Adhesive Strength of Diamond Coating with Cemented Carbide Substrate[J]. International Journal of Refractory Metals and Hard Materials, 2024, 120: 106612.
[5] MITULINSKY A, GAYDAYCHUK A, ZENKIN S, et al.Periodic Renucleation as an Approach to Improving the Tribological Properties of CVD Diamond Films[J]. Tribology International, 2024, 200: 110087.
[6] LU F, FU Z W, BAI X, et al.Research on the Growth State and Performance of Diamond Coatings Based on Different Carbon Source Concentration and Temperature[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2022, 30(8): 830-838.
[7] JIAN X G, HU J B.Synthesis and Characterization of Diamond Films Added CO2 and Ar under CH4/H2 Atmosphere[J]. Surface Review and Letters, 2022, 29(1): 2250012.
[8] 张勇, 袁建辉, 谭礼明, 等. 温度和厚度对纳米金刚石涂层残余应力的影响[J]. 表面技术, 2018, 47(8): 265-270.
ZHANG Y, YUAN J H, TAN L M, et al.Effects of Temperature and Thickness on Residual Stresses of Nano-Diamond Coating[J]. Surface Technology, 2018, 47(8): 265-270.
[9] KIROVA E M, NORMAN G E, PISAREV V V.Dynamics of Changes in Stress Autocorrelation Functions of Aluminum Melt during Ultrafast Cooling[J]. Computational Materials Science, 2020, 172: 109367.
[10] XIAO N, ZHANG Y H, GAO Y J, et al.A Dual- Functional Α-Diketone-Based Disulfide Monomer for Visible LED Photopolymerization: Mitigating Volumetric Shrinkage and Triggering Polymerization[J]. European Polymer Journal, 2024, 217: 113341.
[11] 周牧, 王倩, 王延绪, 等. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
ZHOU M, WANG Q, WANG Y X, et al.Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. Acta Metallurgica Sinica, 2024, 60(8): 1064-1078.
[12] 郦羽, 万正权, 唐文勇. 考虑固相变的钛合金焊接残余应力数值仿真方法[J]. 船舶力学, 2023, 27(1): 109-120.
LI Y, WAN Z Q, TANG W Y.Numerical Simulation Method of Welding Residual Stress of Titanium Alloy Considering Solid-State Phase Transformation[J]. Journal of Ship Mechanics, 2023, 27(1): 109-120.
[13] FAN K, FU Y L, CHEN Q, et al.Study on Phase Transition and Ablation Characteristics of Metal Target Irradiated by Pseudo-Spark Pulsed Electron Beam[J]. Applied Physics A, 2024, 130(6): 375.
[14] 朱煜, 刘思杨, 朱子疏, 等. 钒氧化物薄膜的溅射法制备及电学性质研究[J]. 表面技术, 2018, 47(7): 152-159.
ZHU Y, LIU S Y, ZHU Z S, et al.Preparation of Vanadium Oxides Thermochromic Thin Films in Sputtering Method and Electrical Properties[J]. Surface Technology, 2018, 47(7): 152-159.
[15] HU P, HU P, VU T D, et al.Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications[J]. Chemical Reviews, 2023, 123(8): 4353-4415.
[16] SAHARAN C, RANA P S, KUMAR M.Phase Transition and Optical Properties of VO2 and Al: ZnO/VO2 Thin Films[J]. Coatings, 2022, 12(11): 1737.
[17] 张润. VO2金属—绝缘体转变相关问题研究[D]. 武汉: 华中科技大学, 2019.
ZHANG R.Study on Metal-to-insulator Transition Related Problems in VO2[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[18] 葛玉强. VO2相变过程的第一性原理计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-11.
GE Y Q.Ab Initio Calculations on the Phase Transition in VO2[D]. Harbin: Harbin Institute of Technology, 2017: 1-11.
[19] 史鹏轩. VO2薄膜热导率的分子动力学模拟及实验研究[D]. 大连: 大连理工大学, 2020: 46-54.
SHI P X.Molecular Dynamics Simulation and Experimental Research on Thermal Conductivity of VO2 Thin Film[D]. Dalian: Dalian University of Technology, 2020: 46-54.
[20] 李昆鹏. VO2的界面电子结构及相变特性研究[D]. 武汉: 武汉科技大学, 2023.
LI K P.Study on Interfacial Electronic Structure and Phase Transitional Characteristics of VO2[D]. Wuhan: Wuhan University of Science and Technology, 2023.
[21] ZHENG Z P, ZHAO W C, YI Z, et al.Active Thermally Tunable and Highly Sensitive Terahertz Smart Windows Based on the Combination of a Metamaterial and Phase Change Material[J]. Dalton Transactions, 2023, 52(24): 8294-8301.
[22] YOON D J, KIM D K, HONG D W.Thermochromic Vanadium Dioxide Nanostructures for Smart Windows and Radiative Cooling[J]. Chemistry - A European Journal, 2024, 30(43): e202400826.
[23] BHUPATHI S, WANG S C, WANG G Y, et al.Porous Vanadium Dioxide Thin Film-Based Fabry-Perot Cavity System for Radiative Cooling Regulating Thermochromic Windows: Experimental and Simulation Studies[J]. Nanophotonics, 2024, 13(5): 711-723.
[24] QI H N, TANG B.An Active Tunable Terahertz Functional Metamaterial Based on Hybrid-Graphene Vanadium Dioxide[J]. Physical Chemistry Chemical Physics, 2023, 25(11): 7825-7831.
[25] 谢颖. A2+B4+O3型钙钛矿晶体的结构相变和表面稳定性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 32-38.
XIE Y.Investigations on the Structural Phase Transition and Surface Stabilities of A2+B4+O3 Perovskite Crystals[D]. Harbin: Harbin Institute of Technology, 2008: 32-38.
[26] 杨俊茹, 岳艳萍, 吕浩, 等. 沉积温度对不同Co含量WC-Co/SiC/Diamond界面结合性能的影响[J]. 人工晶体学报, 2023, 52(11): 1997-2006.
YANG J R, YUE Y P, LYU H, et al.Influence of Deposition Temperature on Interface Bonding Properties of WC-Co/SiC/Diamond with Different Co Content[J]. Journal of Synthetic Crystals, 2023, 52(11): 1997-2006.
基金
国家自然科学基金(51975287); 南京航空航天大学研究生科研与实践创新计划项目(xcxjh20230514)