目的 通过实验模拟硫酸盐还原菌(SRB)对镍磷基镀层的腐蚀行为,探究SRB对N80钢、Ni-P及Ni-P/Ni-Cu-P复合镀层的腐蚀过程及差异。方法 采用连续化学镀工艺在N80钢基体上制备了Ni-P/Ni-Cu-P复合镀层。通过生物培养技术、静态挂片实验及电化学测试探究了镀层及N80钢在SRB环境下的腐蚀行为,结合NaS2O3滴定技术、SEM、XRD、XPS等分析手段,对不同膜层的腐蚀行为和差异进行表征分析。结果 在浸泡腐蚀14 d后,N80钢腐蚀速率为0.049 1 mm/a,Ni-P镀层约为0.026 9 mm/a,Ni-P/Ni-Cu-P复合镀层为0.005 1 mm/a。含铜复合镀层环境中的SRB生长数量及S2-含量始终低于其他试样组,并缩短了SRB的生长周期。对比样N80钢和Ni-P单镀层表面均出现明显的点蚀坑,而复合镀层试样表面较光滑、平整,未发现明显孔洞。随着腐蚀的进行,N80钢和Ni-P镀层的阻抗先增加后减少,与SRB生长规律一致,而复合镀层的阻抗依次降低,并未受SRB数量生长的影响。结论 Ni-P/Ni-Cu-P复合镀层较低的孔隙率、较高的接触角,降低了SRB细菌的吸附;此外,Cu离子从合金表面释放进入溶液或SRB体内,破坏了SRB的细胞膜、细胞壁使其结构受损,降低了体系SRB活性;同时复合镀层的高磷非晶结构和致密的表层钝化膜极大地阻碍了离子和电子的进出,增加了膜层阻力,导致Ni-P/Ni-Cu-P复合镀层在SRB和地层水的混合溶液中具有极低的腐蚀速率和较低的点蚀概率。
Abstract
To improve the corrosion resistance of carbon steel against microorganisms, the corrosion behavior of sulfate-reducing bacteria (SRB) on nickel-phosphorus coatings is simulated by experiment, and the corrosion process and differences of SRB on N80 steel, Ni-P and Ni-P/Ni-Cu-P composite coatings are investigated. Ni-P/Ni-Cu-P composite coatings are prepared on the N80 steel substrate using continuous chemical plating process. The corrosion behavior of the coatings and N80 steel in the SRB environment is investigated by biological culture technology, static hanging experiments, and electrochemical tests. Combined with NaS2O3 titration technology, SEM, XRD, and XPS analysis methods are used to characterize and analyze the corrosion behavior and differences of different coating layers. As a result, in terms of coating preparation performance, the surface structure of the Ni-P/Ni-Cu-P composite coatings is more delicate, uniform and dense. No obvious pinholes or defects are found on the surface under 1 000 times magnification, and the surface contact angle is large, which plays a role of hydrophobicity. At the same time, the porosity is very low, only 0.4 N/cm2. After immersion corrosion for 14 days, the corrosion rate of N80 steel is 0.049 1 mm/a, that of the Ni-P coatings is approximately 0.026 9 mm/a, and that of the Ni-P/Ni-Cu-P composite coatings is 0.005 1 mm/a. The number of SRB growths and S2-content in the copper-containing composite coating environment is consistently lower than those in other sample groups, significantly shortening the SRB growth cycle. The samples of N80 steel and Ni-P single coating surfaces show obvious pitting corrosion, while the composite coating samples have a smoother and flatter surface with no significant voids observed. As corrosion progresses, the impedance of N80 steel and Ni-P coatings first increases and then decreases, consistent with the SRB growth pattern, whereas the impedance of the composite coatings sequentially decreases without being affected by the number of SRBs. Comparing the XRD spectra of the composite coatings before and after corrosion, the Ni-P/Ni-Cu-P composite coatings show a significant shift in the diffraction angles and a narrowing of the peak shapes, indicating a decrease in lattice constant. Since the atomic radius of Cu filling the 4s orbital is larger than that of Ni, this suggests that Cu diffuses or migrates from the Ni-Cu solid solution, leading to a phase transformation during the corrosion process. The Ni-P/Ni-Cu-P composite coatings have a lower porosity and higher contact angle, which reduces the adsorption of SRB bacteria; furthermore, Cu ions are released from the alloy surface into the solution or within the SRB cells disrupt the cell membrane and cell wall, causing structural damage to SRB bacteria, leading to noticeable shrinkage, damage, and leakage of cellular contents, thereby reducing the activity of the SRB system and accelerating microbial degradation. At the same time, Ni-Cu-P belongs to the anodic coating, forming a structure with a large anode and a small cathode compared with the inner Ni-P coating, which is relatively safe and reduces the anodic dissolution rate, preventing damage to the composite structure's surface in the short term. Consequently, the longitudinal corrosion of the coating becomes transverse corrosion, delaying the penetration of corrosion to the entire coating layer and sacrificing the top layer to protect the bottom layer, thereby delaying substrate corrosion. Moreover, the high phosphorus amorphous structure and the dense surface passive film of the composite coating significantly hinder the entry and exit of ions and electrons, increasing the film resistance, resulting in extremely low corrosion rates and low pitting probabilities for Ni-P/Ni-Cu-P composite coatings in mixed solutions of SRB and formation water.
关键词
Ni-Cu-P复合镀层 /
硫酸盐还原菌(SRB) /
微生物腐蚀 /
腐蚀防护
Key words
Ni-Cu-P composite coating /
sulphate reducing bacteria (SRB) /
microbial corrosion /
corrosion protection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN J N, WU J J, WANG P, et al.Correction To: Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5913.
[2] 杨帆, 朱世东, 张锦刚, 等. 油气田中常见微生物腐蚀研究进展[J]. 表面技术, 2024, 53(18): 55-66.
YANG F, ZHU S D, ZHANG J G, et al.Research Progress of Common Microbial Corrosion in Oil and Gas Fields[J]. Surface Technology, 2024, 53(18): 55-66.
[3] WU G Y, ZHANG W Z, XU Y, et al.The Corrosion Behavior of Carbon Steel under Coexistence of Carbon Dioxide and SRB[J]. Environmental Science and Pollution Research International, 2024, 31(33): 45875-45886.
[4] 胥聪敏, 李雪丽, 朱文胜, 等. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 209-214.
XU C M, LI X L, ZHU W S, et al.Effect of D-Amino Acid Enhanced Bactericide on Corrosion Behavior of Three Metal Materials[J]. Materials Reports, 2024, 38(20): 209-214.
[5] YANG D Z, LEI Y H, XIE J, et al.The Microbial Corrosion Behaviour of Ni-P Plating by Sulfate-Reducing Bacteria Biofouling in Seawater[J]. Materials Technology, 2019, 34(8): 444-454.
[6] YANG D Z, WANG N X, JINGXIE, et al. Study on Microbial Corrosion Resistance of Ni-P-Ag Coatings in Artificial Marine Environments Containing Sulphate-Reducing Bacteria[J]. International Journal of Electrochemical Science, 2020, 15(12): 11779-11790.
[7] GUAN F, ZHAI X F, DUAN J Z, et al.Influence of Sulfate-Reducing Bacteria on the Corrosion Behavior of 5052 Aluminum Alloy[J]. Surface and Coatings Technology, 2017, 316: 171-179.
[8] ZHAI X F, REN Y D, WANG N, et al.Microbial Corrosion Resistance and Antibacterial Property of Electrodeposited Zn-Ni-Chitosan Coatings[J]. Molecules, 2019, 24(10): 1974.
[9] FAYYAD E M, RASHEED P A, AL-QAHTANI N, et al.Microbiologically-Influenced Corrosion of the Electroless-Deposited NiP-TiNi - Coating[J]. Arabian Journal of Chemistry, 2021, 14(12): 103445.
[10] HUANG C H, ZHANG Z, YAN J, et al.Enhancing Wear and Corrosion Resistance of Electroless Ni-P Coatings in CO2-Saturated NaCl Solution through Polytetrafluoroethylene Incorporation[J]. Corrosion Science, 2024, 226: 111620.
[11] LIU Z D, WANG Y C, ZHAO B, et al.Experimental Study on the Prevention of Microbial Fouling Accumulation on a Ni-Cu-P Modified Heat Exchange Surface[J]. Advanced Powder Technology, 2023, 34(7): 104023.
[12] 刘义林, 袁康杰, 王军华, 等. 化学镀高Cu含量Ni-Cu-P镀层的组织结构及显微力学性能研究[J]. 材料保护, 2022, 55(7): 144-149.
LIU Y L, YUAN K J, WANG J H, et al.Study on Microstructure and Micromechanical Properties of Cu-Rich Ni-Cu-P Coating Synthesized by Electroless Plating[J]. Materials Protection, 2022, 55(7): 144-149.
[13] 蔡毅仁, 王旭东, 刘俊珺, 等. 镁合金化学镀Ni-Cu-P/ Ni-P复合镀层及腐蚀防护机理研究[J]. 表面技术, 2019, 48(3): 47-52.
CAI Y R, WANG X D, LIU J J, et al.Electroless Ni-Cu-P/Ni-P Composite Coatings on Magnesium Alloys and Anti-Corrosion Mechanisms[J]. Surface Technology, 2019, 48(3): 47-52.
[14] WANG B, LI J W, XIE Z H, et al.High Corrosion and Wear Resistant Electroless Ni-P Gradient Coatings on Aviation Aluminum Alloy Parts[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(1): 155-164.
[15] 谭鹏, 曾余祥, 邱海燕, 等. Zn-Ni-Ag复合镀层在硫酸盐还原菌条件下的腐蚀特性[J]. 腐蚀与防护, 2022, 43(11): 17-23.
TAN P, ZENG Y X, QIU H Y, et al.Corrosion Characteristics of Zn-Ni-Ag Composite Coating under Sulfate Reducing Bacteria Condition[J]. Corrosion & Protection, 2022, 43(11): 17-23.
[16] 董续成, 管方, 徐利婷, 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
DONG X C, GUAN F, XU L T, et al.Progress on the Corrosion Mechanism of Sulfate-Reducing Bacteria in Marine Environment on Metal Materials[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(1): 1-12.
[17] 宋翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响[J]. 表面技术, 2022, 51(3): 95-102.
SONG Y, CHEN S G.Effect of Temperature on Corrosion Behavior of Copper-Nickel Alloys by Sulphate-Reducing Bacteria in Anaerobic Environment[J]. Surface Technology, 2022, 51(3): 95-102.
[18] 裴文霞, 赵国仙, 丁浪勇, 等. 温度对管线钢在SRB/ CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 174-181.
PEI W X, ZHAO G X, DING L Y, et al.Effect of Temperature on Corrosion of Pipeline Steel in SRB/CO2 Environment[J]. Materials Reports, 2024, 38(23): 174-181.
[19] LIU H W, XU D K, YANG K, et al.Corrosion of Antibacterial Cu-Bearing 316L Stainless Steels in the Presence of Sulfate Reducing Bacteria[J]. Corrosion Science, 2018, 132: 46-55.
[20] 胡红岩, 陈港泉, 钱玲, 等. NaCl盐的结晶形态及在莫高窟壁画疱疹病害中的作用[J]. 自然杂志, 2016, 38(1): 39-44.
HU H Y, CHEN G Q, QIAN L, et al.NaCl Crystal and Its Roles on the Blister Damage at the Wall-Painting of Mogao Grottoes[J]. Chinese Journal of Nature, 2016, 38(1): 39-44.
[21] 徐子冉, 郭楚玲, 柯常栋, 等. 硫铁比例对生物合成FeS纳米颗粒及其对镉去除的影响机制[J]. 环境科学学报, 2024, 44(9): 227-235.
XU Z R, GUO C L, KE C D, et al.Effect of the Ratio of Sulfur to Iron on the Biosynthesis of FeS Nanoparticles and Their Mechanism of Cadmium Removal[J]. Acta Scientiae Circumstantiae, 2024, 44(9): 227-235.
[22] 陈顺通, 王欢, 崔文权. 铁掺杂硫化铋光芬顿降解有机污染物[J]. 分子催化(中英文), 2024, 38(1): 17-25.
CHEN S T, WANG H, CUI W Q.Iron-Doped Bismuth Sulfide PhotoFenton Degrades Organic Pollutants[J]. Journal of Molecular Catalysis (China), 2024, 38(1): 17-25.
[23] 项光鸿, 沈勇, 倪哲伟, 等. 空心花状结构Fe3O4/MoS2复合物的制备及吸波性能[J]. 功能材料, 2021, 52(5): 5188-5194.
XIANG G H, SHEN Y, NI Z W, et al.Preparation of Hollow Structure Flower-Like Fe3O4/MoS2 Composite and Its Microwave Absorption Property[J]. Journal of Functional Materials, 2021, 52(5): 5188-5194.
[24] 陈卉丽, 程普, 韩秀兰, 等. 重庆大足石刻舒成岩砂岩本体表面风化产物研究[J]. 文物保护与考古科学, 2024, 36(2): 63-72.
CHEN H L, CHENG P, HAN X L, et al.Research on the Weathering Products of the Superficial Rock of Dazu Shuchengyan, Chongqing[J]. Sciences of Conservation and Archaeology, 2024, 36(2): 63-72.
[25] 宋昕芮, 赵玉, 王玉晓, 等. 锌钴钼复合脱硫剂中温脱硫与加氢催化耦合[J]. 煤炭学报, 2025, 50(3): 1760-1768.
SONG X R, ZHAO Y, WANG Y X, et al.Coupling of Medium Temperature Desulfurization and Hydrogenation Catalysis of Zinc-Cobalt-Molybdenum Composite Desulfurizer[J]. Journal of China Coal Society, 2025, 50(3): 1760-1768.
[26] 吴睿琦,刘成宝,陈丰,等. CuS/MoS2-g-C3N4/C多相复合材料的合成及其电化学性能[J/OL]. 材料工程,2024,07(24): 1-17.
WU R Q, LIU C B, CHEN F, et al.CuS/MoS2-g-C3N4/C Polycrystalline Composite Materials Synthesis and Electrochemical Properties [J/OL]. Materials Engineering, 2024, 07(24): 1-17.
[27] ENNING D, GARRELFS J.Corrosion of Iron by Sulfate- Reducing Bacteria: New Views of an Old Problem[J]. Applied and Environmental Microbiology, 2014, 80(4): 1226-1236.
[28] 潘响亮, 王建龙, 张道勇. 海藻酸钙固定混合SRB菌群生物吸附Ni2+的动力学[J]. 应用与环境生物学报, 2006, 12(5): 697-700.
PAN X L, WANG J L, ZHANG D Y.Kinetics of Ni2+ Biosorption by Mixed SRB Population Immobilized in Ca-Alginate[J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(5): 697-700.
[29] 覃炳朝, 刘雨杨, 王均, 等. M2052阻尼合金化学镀Ni-Cu-P后摩擦磨损和冲刷腐蚀性能研究[J]. 热加工工艺, 2024, 53(4): 32-37.
QIN B C, LIU Y Y, WANG J, et al.Research on Wear and Erosion-Corrosion Properties of M2052 Damping Alloy after Electroless Ni-Cu-P Plating[J]. Hot Working Technology, 2024, 53(4): 32-37.
[30] ZHANG W Z, LIAO D D, TANG D Z, et al.Study on Corrosion Behavior of Ni-P/Ni-Cu-P Superhydrophobic Composite Coatings Preparation on L360 Steel by Two-Step Method[J]. Journal of Materials Research and Technology, 2023, 23: 3035-3047.
[31] 钱熙文, 王均, 廖丹丹, 等. L360钢化学镀Ni-Cu-P在H2S环境中的腐蚀性能研究[J]. 热加工工艺, 2023, 52(22): 15-18.
QIAN X W, WANG J, LIAO D D, et al.Research on Corrosion Properties of L360 Steel with Electroless Ni-Cu-P Plating in H2S Environment[J]. Hot Working Technology, 2023, 52(22): 15-18.
[32] 李杰, 李东博, 杜燕雯, 等. 温度对钢质管道SRB腐蚀行为的影响[J]. 全面腐蚀控制, 2021, 35(12): 132-138.
LI J, LI D B, DU Y W, et al.Effect of Temperature on SRB Corrosion of Steel Pipeline[J]. Total Corrosion Control, 2021, 35(12): 132-138.
[33] 赵坤, 孙万昌, 侯嵬玮, 等. Ni-P合金梯度镀层微观结构及在酸性介质中的耐蚀性能[J]. 热加工工艺, 2014, 43(20): 118-120.
ZHAO K, SUN W C, HOU W W, et al.Microstructure and Corrosion Resistance of Ni-P Gradient Coating in Acidic Medium[J]. Hot Working Technology, 2014, 43(20): 118-120.
[34] 陈明锴, 李全德, 倪荣, 等. 水基金属清洗剂的清洁性能及缓蚀行为研究[J]. 电镀与涂饰, 2024, 43(11): 100-108.
CHEN M K, LI Q D, NI R, et al.Cleaning Performance and Corrosion Inhibition Behavior of Water-Based Metal Cleaners[J]. Electroplating & Finishing, 2024, 43(11): 100-108.
[35] SHANG W, WU F, JIANG S Q, et al.Effect of Hydrophobicity on the Corrosion Resistance of Microarc Oxidation/Self-Assembly/Nickel Composite Coatings on Magnesium Alloys[J]. Journal of Molecular Liquids, 2021, 330: 115606.
[36] CUI M J, REN S M, ZHAO H C, et al.Polydopamine Coated Graphene Oxide for Anticorrosive Reinforcement of Water-Borne Epoxy Coating[J]. Chemical Engineering Journal, 2018, 335: 255-266.
[37] LI Y M, XUE Y X, ROY CHOWDHURY T, et al.Genomic Insights into Redox-Driven Microbial Processes for Carbon Decomposition in Thawing Arctic Soils and Permafrost[J]. mSphere, 2024, 9(7): e0025924.
[38] 吕艳红, 吉利, 刘流, 等. 调制周期对CrAl/CrAlN多层薄膜结构及耐腐蚀性能的影响[J]. 中国表面工程, 2013, 26(5): 18-23.
LYU Y H, JI L, LIU L, et al.Influence of Modulation Periodicities on Structure and Corrosion Properties of CrAl/CrAlN Multi-Layer Films[J]. China Surface Engineering, 2013, 26(5): 18-23.
[39] 李鑫. 含铜L245管线钢及焊缝硫酸盐还原菌腐蚀机理研究[D]. 北京: 中国石油大学(北京), 2022: 64-66.
LI X.Study on Corrosion Mechanism of Sulfate Reducing Bacteria in Copper-bearing L245 Pipeline Steel and Weld[D]. Beijing: China University of Petroleum (Beijing), 2022: 64-66.
[40] 翟明启. 铝合金表面镀铜薄膜的制备及其对航油的抑菌性能研究[D]. 广汉: 中国民用航空飞行学院, 2020: 25-27.
ZHAI M Q.Preparation of copper-plated film on aluminum alloy surface and its bacteriostatic performance on aviation oil[D]. Guanghan: Civil Aviation Flight University of China, 2020: 25-27.
[41] 王晓岚. 金属离子的抗菌性能及其抗菌机理研究[D]. 广州: 华南理工大学, 2015: 46-49.
WANG X L.Study on Antibacterial Properties and Antibacterial Mechanism of Metal Ions[D]. Guangzhou: South China University of Technology, 2015: 46-49.
[42] WANG B, LI J W, XIE Z H, et al.High Corrosion and Wear Resistant Electroless Ni-P Gradient Coatings on Aviation Aluminum Alloy Parts[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(1): 155-164.
[43] SUN C, LI J K, SHUANG S, et al.Effect of Defect on Corrosion Behavior of Electroless Ni-P Coating in CO2- Saturated NaCl Solution[J]. Corrosion Science, 2018, 134: 23-37.
基金
国家自然科学基金(52401111); 陕西省自然科学基础研究计划项目(2024JC-YBQN-0457); 西安市科技计划项目(24GXFW0075)