高温环境下等离子喷涂56YSZ涂层CMAS腐蚀机制分析

胡延浩, 范习之, 黄文质, 赵凯睿, 毛卫国

表面技术 ›› 2025, Vol. 54 ›› Issue (12) : 61-71.

PDF(23651 KB)
PDF(23651 KB)
表面技术 ›› 2025, Vol. 54 ›› Issue (12) : 61-71. DOI: 10.16490/j.cnki.issn.1001-3660.2025.12.005
腐蚀与防护

高温环境下等离子喷涂56YSZ涂层CMAS腐蚀机制分析

  • 胡延浩1,2, 范习之1, 黄文质2,*, 赵凯睿2,3, 毛卫国1,*
作者信息 +

CMAS Corrosion Behavior and Its Mechanism of Plasma-sprayed 56YSZ Coatings at 1 350 ℃

  • HU Yanhao1,2, FAN Xizhi1, HUANG Wenzhi2,*, ZHAO Kairui2,3, MAO Weiguo1,*
Author information +
文章历史 +

摘要

目的 阐明56%(质量分数)氧化钇稳定氧化锆(56YSZ)涂层1 350 ℃条件下CMAS(钙镁铝硅酸盐)腐蚀行为,分析腐蚀产物及其演变规律,揭示等离子喷涂56YSZ涂层高温CMAS腐蚀机理。方法 利用大气等离子喷涂方法制备56YSZ涂层,在1 350 ℃条件下对表面涂敷CMAS(33CaO-9MgO-13AlO1.5-45SiO2)的56YSZ涂层进行CMAS腐蚀试验。结合X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析仪(EDS),表征经1 350 ℃腐蚀不同时间后涂层物相结构与微观形貌,以分析1 350 ℃条件下56YSZ涂层CMAS腐蚀行为。结果 在1 350 ℃高温环境下,涂层CMAS腐蚀速率随时间延长呈明显的下降趋势,8 h后涂层CMAS腐蚀速率最低(0.50 μm/h),且经过50 h腐蚀后CMAS腐蚀深度由(150.9±11.0) μm增至(172.5±18.3) μm。在腐蚀初期,CMAS熔体快速渗透,与涂层反应生成了磷灰石相;然而,随着CMAS熔体中Si4+/Al3+比值逐渐降低,熔体与涂层反应生成了石榴石相,且c-ZrO2包裹磷灰石相与石榴石相形成了致密的保护层;最终涂层腐蚀区反应产物主要为c-ZrO2、磷灰石相及石榴石相。结论 56YSZ涂层在1 350 ℃条件下展现出优异的抗CMAS腐蚀性能,腐蚀反应生成的磷灰石相、石榴石相以及c-ZrO2共同组成了致密保护层,有效阻滞了CMAS熔体的腐蚀渗透,并快速消耗CMAS熔体活性元素,在56YSZ涂层抗腐蚀过程中起到了积极作用。

Abstract

The CMAS (calcium-magnesium-alumino-silicate) corrosion behavior of the free-standing 56 wt.% yttria stabilized zirconia (56YSZ) coatings fabricated via atmospheric plasma spraying process at 1 350 ℃ is investigated and its corrosion mechanism is also elucidated in the research. Firstly, the mixture powders composed of 33% CaO, 9% MgO, 13% AlO1.5, and 45% SiO2 are uniformly mixed and coated to the surface of as-deposited coatings, and then the coated samples are subject to high-temperature exposure in a muffle furnace at 1 350 ℃ for different times. After corrosion at 1 350 ℃ for different times, the phase composition and microstructure of the corrosion products are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectroscopy (EDS). As a result, the corrosion depth of 56YSZ coating is increased rapidly from (57.6±6.7) μm to (150.9±11.0) μm with the prolonged exposure time after being exposed at 1 350 ℃, and the final corroded layer with the thickness of (172.5±18.3) μm is achieved after corrosion for 50 h. It is easy to note that a positive relationship between the depth of the corroded layer and the corrosion duration is obtained. During the initial stage of corrosion, the CMAS mixture powders are deposited on the coating surface and gradually melted with the increasing temperature, which could be infiltrated into the coating through the presence of cracks and pores. As we all know, the CMAS corrosion rate is directly related to the viscosity of the melt and its element content. In this corrosion stage, the CMAS melt would quickly react with Y3+ to form an apatite phase, and the corrosion rate is also increased, which is mainly attributed to the richest CMAS melt and its highest viscosity. However, the viscosity of the CMAS melt is then reduced under the combined effect of the decreasing SiO2/CaO ratio and the permeate of Y3+. With the reaction proceeding, the apatite phase consumes large amounts of Si4+ and Ca2+, and lower Si4+/Al3+ ratio in the CMAS melt creates favorable conditions for the formation of garnet, resulting in the decrease of the corrosion rate from 28.8 μm/h to 15.9 μm/h. After corrosion for 4 hours, it is observed that the two dense layers appear in the inner region and the outer region of the corrosion layer. Based on the element distribution, the outer region of the corrosion layer is mainly consisted of c-ZrO2 and the apatite phase, while the c-ZrO2 and the garnet phase present in the inner region. Due to the formation of dense layers, the CMAS melt penetration is blocked. When the corrosion time is prolonged to 8 hours, the elements in the melt are nearly consumed and the corrosion rate is significantly reduced to 0.5 μm/h. At this stage of corrosion reaction, the appearance of element diffusion and segregation is present in the corrosion products, and large-scale pores appear in the corrosion layer, while a thin calcium-rich layer is formed on the surface. Consequently, the CMAS corrosion behavior of plasma-sprayed 56YSZ coating could be divided into three stages, including the initial rapid corrosion dominated by the thermal penetration of CMAS melt, followed by the formation of a dense layer composed of apatite and garnet phases via thermochemical reactions, and the arreargae of the CMAS corrosion resulting in the slowly increase of corrosion layer. The primary phases in the CMAS corrosion products are found to be c-ZrO2, apatite, and garnet. It is concluded that the 56YSZ coating could be considered to be a promising candidate material for thermal barrier coatings (TBCs) with exceptional CMAS corrosion resistance.

关键词

高氧化钇稳定氧化锆 / CMAS腐蚀 / 热障涂层 / 腐蚀机理 / 热渗透 / 大气等离子喷涂

Key words

high yttria stabilized zirconia / CMAS corrosion / thermal barrier coating / corrosion mechanism / thermal penetration / atmospheric plasma spraying

引用本文

导出引用
胡延浩, 范习之, 黄文质, 赵凯睿, 毛卫国. 高温环境下等离子喷涂56YSZ涂层CMAS腐蚀机制分析[J]. 表面技术. 2025, 54(12): 61-71 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.005
HU Yanhao, FAN Xizhi, HUANG Wenzhi, ZHAO Kairui, MAO Weiguo. CMAS Corrosion Behavior and Its Mechanism of Plasma-sprayed 56YSZ Coatings at 1 350 ℃[J]. Surface Technology. 2025, 54(12): 61-71 https://doi.org/10.16490/j.cnki.issn.1001-3660.2025.12.005
中图分类号: TG174.4   

参考文献

[1] PADTURE N P, GELL M, JORDAN E H.Thermal Barrier Coatings for Gas-Turbine Engine Applications[J]. Science, 2002, 296(5566): 280-284.
[2] MILLER R A.Thermal Barrier Coatings for Aircraft Engines: History and Directions[J]. Journal of Thermal Spray Technology, 1997, 6(1): 35-42.
[3] CAO X Q, VASSEN R, STOEVER D.Ceramic Materials for Thermal Barrier Coatings[J]. Journal of the European Ceramic Society, 2004, 24(1): 1-10.
[4] LASHMI P G, ANANTHAPADMANABHAN P V, UNNIKRISHNAN G, et al.Present Status and Future Prospects of Plasma Sprayed Multilayered Thermal Barrier Coating Systems[J]. Journal of the European Ceramic Society, 2020, 40(8): 2731-2745.
[5] ZHAO M, PAN W, WAN C L, et al.Defect Engineering in Development of Low Thermal Conductivity Materials: A Review[J]. Journal of the European Ceramic Society, 2017, 37(1): 1-13.
[6] KRAUSE A R, GARCES H F, HERRMANN C E, et al.Resistance of 2ZrO2·Y2O3 Top Coat in Thermal/Environmental Barrier Coatings to Calcia-Magnesia-Aluminosilicate Attack at 1 500 ℃[J]. Journal of the American Ceramic Society, 2017, 100(7): 3175-3187.
[7] ZHOU X, HE L M, CAO X Q, et al.La2(Zr0.7Ce0.3)2O7 Thermal Barrier Coatings Prepared by Electron Beam- Physical Vapor Deposition that Are Resistant to High Temperature Attack by Molten Silicate[J]. Corrosion Science, 2017, 115: 143-151.
[8] RAMIREZ VELASCO J H, PETROSKY K, KILAZ G, et al. Thermochemical Interaction of Biofuel Impurities with Yttria-Stabilized Zirconia Thermal Barrier Coatings[J]. Ceramics International, 2021, 47(17): 24675-24682.
[9] MILLER S F, MILLER B G.The Occurrence of Inorganic Elements in Various Biofuels and Its Effect on Ash Chemistry and Behavior and Use in Combustion Products[J]. Fuel Processing Technology, 2007, 88(11/12): 1155-1164.
[10] 郭磊, 高远, 叶福兴, 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
GUO L, GAO Y, YE F X, et al.CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. Acta Metallurgica Sinica, 2021, 57(9): 1184-1198.
[11] WU J, GUO H B, GAO Y Z, et al.Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits[J]. Journal of the European Ceramic Society, 2011, 31(10): 1881-1888.
[12] WELLMAN R, WHITMAN G, NICHOLLS J R.CMAS Corrosion of EB PVD TBCS: Identifying the Minimum Level to Initiate Damage[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 124-132.
[13] MERCER C, FAULHABER S, EVANS A G, et al.A Delamination Mechanism for Thermal Barrier Coatings Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Infiltration[J]. Acta Materialia, 2005, 53(4): 1029-1039.
[14] WANG F, GUO L, WANG C M, et al.Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Characteristics of LnPO4 (LN=ND, Sm, Gd) Thermal Barrier Oxides[J]. Journal of the European Ceramic Society, 2017, 37(1): 289-296.
[15] KARGER M, VAßEN R, STÖVER D. Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior[J]. Surface and Coatings Technology, 2011, 206(1): 16-23.
[16] LEE D H, KANG N K, LEE K S, et al.Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior[J]. Journal of the Korean Ceramic Society, 2017, 54(4): 314-322.
[17] GUO L, GUO H B, PENG H, et al.Thermophysical Properties of Yb2O3 Doped Gd2Zr2O7 and Thermal Cycling Durability of (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings[J]. Journal of the European Ceramic Society, 2014, 34(5): 1255-1263.
[18] DOU M F, GAO W, XUE T, et al.CMAS Corrosion Characteristics of YSZ and Al2O3-YSZ Thermal Barrier Coatings at 1 250 ℃-1 350 ℃[J]. Journal of the European Ceramic Society, 2024, 44(15): 116789.
[19] GUO L, YAN Z, YU Y, et al.CMAS Resistance Characteristics of LaPO4/YSZ Thermal Barrier Coatings at 1 250 ℃- 1 350 ℃[J]. Corrosion Science, 2019, 154: 111-122.
[20] RAI A K, BHATTACHARYA R S, WOLFE D E, et al.CMAS-Resistant Thermal Barrier Coatings (TBC)[J]. International Journal of Applied Ceramic Technology, 2010, 7(5): 662-674.
[21] ZHANG B P, SONG W J, WEI L L, et al.Novel Thermal Barrier Coatings Repel and Resist Molten Silicate Deposits[J]. Scripta Materialia, 2019, 163: 71-76.
[22] WANG J S, LU X J, SHU C X, et al.CMAS Corrosion Resistance of YSZ Thermal Barrier Coatings Enhanced by Pt-Al Films[J]. Ceramics International, 2024, 50(3): 5111-5120.
[23] FANG H J, WANG W Z, HUANG J B, et al.Corrosion Resistance and Thermal-Mechanical Properties of Ceramic Pellets to Molten Calcium-Magnesium-Alumina- Silicate (CMAS)[J]. Ceramics International, 2019, 45(16): 19710-19719.
[24] LI W S, ZHAO H Y, ZHONG X H, et al.Air Plasma- Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)[J]. Journal of Thermal Spray Technology, 2014, 23(6): 975-983.
[25] ZHANG H, CHEN Y, LI L, et al.Unraveling the CMAS Corrosion Mechanism of APS High-Yttria-Stabilized Zirconia Thermal Barrier Coatings[J]. Journal of the European Ceramic Society, 2024, 44(8): 5154-5165.
[26] ZHAO K R, HUANG W Z, DENG P H, et al.Mechanical Properties, Thermal Shock Resistance and Stress Evolution of Plasma-Sprayed 56wt.% Y2O3-Stabilized ZrO2 Thick Thermal Barrier Coatings[J]. Surface and Coatings Technology, 2024, 494: 131352.
[27] BURSICH S, MORELLI S, BOLELLI G, et al.The Effect of Ceramic YSZ Powder Morphology on Coating Performance for Industrial TBCS[J]. Surface and Coatings Technology, 2024, 476: 130270.
[28] LI Z J, WANG S, ZHANG M Q, et al.New Type of High-Power Laser Protection Coatings with both High Reflectivity and Low Thermal Conductivity[J]. Ceramics International, 2025, 51(3): 3176-3184.
[29] DREXLER J M, ORTIZ A L, PADTURE N P.Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca-Mg-Al-Silicate (CMAS) Glass[J]. Acta Materialia, 2012, 60(15): 5437-5447.
[30] REJITH R S, KRISHNAN R R, JOHN A, et al.Structural Optical and Electrical Properties of RE4Zr3O12 (Re = Dy, Y, Er, and Yb) Nanoceramics[J]. Ionics, 2019, 25(11): 5091-5103.
[31] NARAPARAJU R, GOMEZ CHAVEZ J J, SCHULZ U, et al. Interaction and Infiltration Behavior of Eyjafjallajökull, Sakurajima Volcanic Ashes and a Synthetic CMAS Containing FeO with/in EB-PVD ZrO2-65 wt.% Y2O3 Coating at High Temperature[J]. Acta Materialia, 2017, 136: 164-180.
[32] SONG X W, XIE M, ZHOU F, et al.High-Temperature Thermal Properties of Yttria Fully Stabilized Zirconia Ceramics[J]. Journal of Rare Earths, 2011, 29(2): 155-159.
[33] YANG G J, CHEN Z L, LI C X, et al.Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating during High-Temperature Exposure: Comparison Study between 8YSZ and 20YSZ[J]. Journal of Thermal Spray Technology, 2013, 22(8): 1294-1302.
[34] WU D, SHAN X, CAI H Y, et al.Grain Boundary Corrosion Mechanism of YSZ Thermal Barrier Oxides under CMAS Attack[J]. Corrosion Science, 2022, 209: 110803.
[35] SHAN X, ZOU Z H, GU L J, et al.Buckling Failure in Air-Plasma Sprayed Thermal Barrier Coatings Induced by Molten Silicate Attack[J]. Scripta Materialia, 2016, 113: 71-74.
[36] BOROM M P, JOHNSON C A, PELUSO L A.Role of Environment Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings[J]. Surface and Coatings Technology, 1996, 86: 116-126.
[37] FABRICHNAYA O, WANG C, ZINKEVICH M, et al.Phase Equilibria and Thermodynamic Properties of the ZrO2-GdO1.5-YO1.5 System[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(6): 591-604.
[38] KRAUSE A R, SENTURK B S, GARCES H F, et al.2ZrO2·Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I, Optical Basicity Considerations and Processing[J]. Journal of the American Ceramic Society, 2014, 97(12): 3943-3949.
[39] HUANG W Z, ZHONG R Q, ZHOU X, et al.Degradation of LaPO4-8YSZ Composite Thick Thermal Barrier Coatings by Molten Calcium-Magnesium-Aluminosilicate[J]. Journal of the European Ceramic Society, 2025, 45(2): 116863.
[40] SIEGRIST T.X-Ray Structure Analysis[M]. Berlin: Walter de Gruyter GmbH, 2021:89-110
[41] TOTEMEIER T C, WRIGHT R N, SWANK W D.Residual Stresses in High-Velocity Oxy-Fuel Metallic Coatings[J]. Metallurgical and Materials Transactions A, 2004, 35(6): 1807-1814.
[42] ZHOU B Y, WU Y, KE X J, et al.Resistance of Ytterbium Silicate Environmental Barrier Coatings Against Molten Calcium-Magnesium-Aluminosilicate (CMAS): A Comprehensive Study[J]. Surface and Coatings Technology, 2024, 479: 130540.
[43] CHENG F H, MENG Z Q, CHENG C F, et al.Fluorite- Pyrochlore Structured High-Entropy Oxides: Tuning the Ratio of B-Site Cations for Resistance to CMAS Corrosion[J]. Corrosion Science, 2023, 218: 111199.
[44] WU T, HE S P, LIANG Y J, et al.Molecular Dynamics Simulation of the Structure and Properties for the CaO- SiO2 and CaO-Al2O3 Systems[J]. Journal of Non-Crystalline Solids, 2015, 411: 145-151.
[45] JIA R D, DENG L B, YUN F, et al.Effects of SiO2/CaO Ratio on Viscosity, Structure, and Mechanical Properties of Blast Furnace Slag Glass Ceramics[J]. Materials Chemistry and Physics, 2019, 233: 155-162.
[46] GODBOLE E, VON DER HANDT A, POERSCHKE D. Apatite and Garnet Stability in the Al-Ca-Mg-Si- (Gd/Y/Yb)-O Systems and Implications for T/EBC: CMAS Reactions[J]. Journal of the American Ceramic Society, 2022, 105(2): 1596-1609.
[47] SUMMERS W D, POERSCHKE D L, TAYLOR A A, et al.Reactions of Molten Silicate Deposits with Yttrium Monosilicate[J]. Journal of the American Ceramic Society, 2020, 103(4): 2919-2932.

基金

国家自然科学基金(52371087); 湖南省自然科学基金(2025JJ20043)

PDF(23651 KB)

Accesses

Citation

Detail

段落导航
相关文章

/