LIU Yu-han,LIU De,WANG Yi,WANG Hu-ming,CAO Pan.Research Progress of the Surface Modification by Dopamine in Medical Field[J],51(11):164-173
Research Progress of the Surface Modification by Dopamine in Medical Field
  
View Full Text  View/Add Comment  Download reader
DOI:10.16490/j.cnki.issn.1001-3660.2022.11.014
KeyWord:dopamine  polydopamine  surface modification  medical apparatus  medical implant materials
              
AuthorInstitution
LIU Yu-han Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou , China
LIU De Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou , China
WANG Yi Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou , China
WANG Hu-ming Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou , China
CAO Pan Institute of Surface Engineering, School of Mechanical Engineering, Yangzhou University, Jiangsu Yangzhou , China
Hits:
Download times:
Abstract:
      Dopamine (DA) and polydopamine (PDA) contain a large number of active and hydrophilic functional groups like catechol groups and amino groups. Therefore, they possess many properties such as strong adhesive property, good biocompatibility, outstanding reactivity and reducibility and they are widely used for surface modification of medical device materials, ship materials, sensor materials, drug transportation materials, etc. Among them, the research prospects for the surface modification of medical device materials are particularly broad. materials. This article analyzes the various properties and functions of dopamine, and summarizes the specific application of dopamine in bioengineering materials such as enhancing the bone tissue regeneration ability of the material and improving the adhesion and proliferation of cells on the surface of the material. On this basis, the manuscript focuses on the research progress of dopamine modification in the medical field in recent years. Explains the advantages, disadvantages and functions of each material, and how dopamine's characteristics modify the surface of the material to make up for the defects of the material. In view of the dopamine modification of different materials, the preparation methods and experimental comparison results were summarized. The future perspectives of dopamine surface modification technology are discussed rationally at the end. The modification of dopamine on bone repair and bone graft materials includes composite materials and polymer materials, etc.; Dopamine on dental implants and dental restoration materials Modifications include nano-metal materials and alloy materials; the modification of new medical materials by dopamine includes artificial blood vessels, artificial ligament materials and medical membrane materials. In most articles, dopamine coatings are prepared in much the same way. Dopamine is added to Tris-HCl buffer, and then the material is soaked in solution to form a film of dopamine on the surface of the material. Due to its excellent adhesion and chemical reaction activity, dopamine can be used as a bridge between engineered scaffolds and cells, effectively promoting the adhesion and proliferation of cells on the surface of scaffolds and improving the adhesion of cells on the surface of bone repair materials. Due to the large number of active functional groups, such as catechol groups and amino groups, dopamine can combine bone repair materials with growth factors through covalent bond or non-covalent bond, and the binding force of the two is significantly improved, thus enhancing the regeneration ability of bone tissue. Due to its good adhesion, dopamine can improve the regeneration ability of the bone tissue by guiding the surface mineralization of the scaffold material, so as to slow down the occurrence of the stress shielding phenomenon of the scaffold. Dopamine contains a large number of amino, hydroxyl and other hydrophilic groups. By adding hydrophilic groups on the hydrophobic surface of the material, dopamine can improve the hydrophilic properties of the material, thus improving cell adhesion and proliferation, making artificial blood vessels, artificial ligaments and other materials more suitable for medical applications. Dopamine can undergo oxidation self-polymerization under weak alkaline conditions with dissolved oxygen, forming a biocompatible polydopamine coating on the surface of the material. Polydopamine coatings can react with compounds containing groups such as amino groups and thiols through the structure of phthalol to form a strong and stable chemical bond, and antibiotic drugs can be grafted to the surface of the material by polydopamine coupling. The surface of dopamine-modified medical devices has the disadvantages of adhesion, friction resistance, antibacterial broad spectrum and insufficient timeliness. In order to overcome the above shortcomings, it is necessary to improve the timeliness of dopamine modification coatings from the dopamine polymerization and adhesion mechanism, and incorporate antibacterial and antifouling organic matter on the basis of not affecting its biocompatibility, so as to improve the broad spectrum and adhesion of the anti-biofilm.
Close