WANG Xi-xi,CAO Mao-sheng.Low-dimensional Electromagnetic Functional Materials[J],49(2):18-28
Low-dimensional Electromagnetic Functional Materials
Received:August 16, 2019  Revised:February 20, 2020
View Full Text  View/Add Comment  Download reader
DOI:10.16490/j.cnki.issn.1001-3660.2020.02.003
KeyWord:low-dimensional materials  electromagnetic response  energy conversion  electromagnetic properties  electromagnetic interference shielding  microwave absorption
     
AuthorInstitution
WANG Xi-xi Beijing Institute of Technology, Beijing , China
CAO Mao-sheng Beijing Institute of Technology, Beijing , China
Hits:
Download times:
Abstract:
      Electromagnetic (EM) functional materials have broad application prospects in national defense fields like military stealth, information confrontation, etc. and in civil technical fields including EM radiation protection, microwave communications, etc. Low-dimensional materials have attracted more and more attention in EM wave absorbing and shielding, communicating and imaging, sensing and detecting, etc. due to the particular electromagnetic properties. Here, the significant progress of Cao's group in low-dimensional EM functional materials was summarized, including carbon nanotubes, graphene, silicon carbide, zinc oxide, transition metals and their compounds, multiferroic materials, etc. The EM responses were systematically illustrated, including charge transport, dipole polarization, magnetic resonance, magnetic eddy current, etc. Moreover, some significant models and equations were demonstrated, including electron-hopping (EHP) model, aggregation induced charge transport (AICT) model, capacitor-like structure, equivalent-circuit model, as well as equivalent series circuit equation and conductive-network equation, etc. The important relation between electromagnetic response of low-dimensional materials and electromagnetic shielding and absorption was also revealed, namely, electromagnetic energy conversion mechanism, including cooperative competition mechanism of polarization relaxation and charge transport, cooperative competition effect of interface scattering, micro-current, micro-antenna radiation and medium relaxation, etc. Finally, the development process of this field was deeply analyzed, the major challenges faced by this field were put forward, and the future research direction was predicted.
Close