CHEN Yu-xi,GAO Yu-kui.Simulation of the Residual Stress and Fatigue Prediction of Ti2AlNb Intermetallic Compound under Shot Peening[J],48(6):167-172
Simulation of the Residual Stress and Fatigue Prediction of Ti2AlNb Intermetallic Compound under Shot Peening
Received:January 02, 2019  Revised:June 20, 2019
View Full Text  View/Add Comment  Download reader
DOI:10.16490/j.cnki.issn.1001-3660.2019.06.019
KeyWord:shot peening  surface modification  numerical simulation  residual stress  fatigue life prediction  new material
     
AuthorInstitution
CHEN Yu-xi School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai , China
GAO Yu-kui School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai , China
Hits:
Download times:
Abstract:
      The work aims to investigate the distribution characteristics of residual stresses on the surface layer of Ti2AlNb materials by shot peening, and predict the effect of residual stresses on fatigue performance. The residual stresses of Ti2AlNb specimens modified by shot peening were measured by the method of hole-drilling with strain gauge layer by layer. The test data of the residual stress field in various aspects were obtained. Combined with ABAQUS numerical simulation method, the results of the test and simulation of residual stress field were compared, and the residual stress gradient of the material was finally obtained. The fatigue life of the specimens before and after shot peening was predicted by FE-SAFE software by superimposing the residual stress field. Under the processing parameters, the experimental and simulation results coincided well. Shot peening could introduce maximum residual compressive stress up to 300 MPa in Ti2AlNb target and the depth of residual compressive stress layer was about 0.12 mm. The plastic strain distribution on the surface of the material was uneven, and the depth of plastic strain along the surface could reach 0.1 mm. After shot peening, residual compressive stresses were introduced so that the predicted fatigue limit of the material was raised by about 12%, and both the high and low cycle fatigue life was efficiently increased. The accuracy and reliability of FEM numerical simulation of shot peening of this material are confirmed, and the residual stress field of Ti2AlNb material is obtained. Due to the limitation of plastic deformation induced mechanism, shot peening results in uneven distribution of plastic strain, and the depth of plastic strain layer is less than that of residual compressive stress layer. Meanwhile, the fatigue property of the material is improved significantly, the fatigue limit is increased considerably, and both the high and low cycle fatigues have visible life extension effect.
Close