马金彪,杨志亮,任飞桐,黄珂,刘宇晨,郭之健,陈良贤,刘金龙,魏俊俊,李成明.MPCVD的衬底结构对金刚石异质外延偏压形核均匀性的影响[J].表面技术,2025,54(8):201-209.
MA Jinbiao,YANG Zhiliang,REN Feitong,HUANG Ke,LIU Yuchen,GUO Zhijian,CHEN Liangxian,LIU Jinlong,WEI Junjun,LI Chengming.Effect of Substrate Structure of MPCVD on Uniformity of Diamond Heteroepitaxial Bias Nucleation[J].Surface Technology,2025,54(8):201-209
MPCVD的衬底结构对金刚石异质外延偏压形核均匀性的影响
Effect of Substrate Structure of MPCVD on Uniformity of Diamond Heteroepitaxial Bias Nucleation
投稿时间:2024-05-13  修订日期:2024-11-08
DOI:10.16490/j.cnki.issn.1001-3660.2025.08.018
中文关键词:  金刚石  形核  偏压增强形核  等离子体  异质外延
英文关键词:diamond  nucleation  bias enhanced nucleation  plasma  heteroepitaxial
基金项目:
作者单位
马金彪 北京科技大学 新材料技术研究院,北京 100083 
杨志亮 北京科技大学 新材料技术研究院,北京 100083 
任飞桐 北京科技大学 新材料技术研究院,北京 100083 
黄珂 北京科技大学 新材料技术研究院,北京 100083 
刘宇晨 北京科技大学 新材料技术研究院,北京 100083 
郭之健 北京科技大学 新材料技术研究院,北京 100083 
陈良贤 北京科技大学 新材料技术研究院,北京 100083 
刘金龙 北京科技大学 新材料技术研究院,北京 100083 
魏俊俊 北京科技大学 新材料技术研究院,北京 100083 
李成明 北京科技大学 新材料技术研究院,北京 100083 
AuthorInstitution
MA Jinbiao Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
YANG Zhiliang Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
REN Feitong Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
HUANG Ke Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
LIU Yuchen Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
GUO Zhijian Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
CHEN Liangxian Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
LIU Jinlong Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
WEI Junjun Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
LI Chengming Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 实现高密度高取向金刚石形核是获得异质外延大尺寸金刚石单晶膜的关键,而偏压增强形核法是高密度形核的主要技术。方法 采用COMSOL Multiphysics构建多物理场(等离子体场、电磁场和流体传热场)耦合模型,基于衬底负偏压,分别对4种衬底结构进行模拟,在径向和轴向上对比衬底结构对等离子体分布均匀性的影响,通过扫描显微镜表征异质外延偏压形核实况以验证模型。结果 模拟结果表明,双凸槽形结构的等离子体在径向和轴向的分布均匀性最差,径向上的等离子体密度从中心至边缘逐渐趋近于零,轴向上的等离子体密度从中心至边缘降低1/2,而单凹槽形结构衬底的等离子体在径向和轴向的分布均匀性最佳。实验结果表明,双凸槽结构的衬底等离子体密度趋近于零处未发生形核,双凸槽结构的均匀形核区为17%,而单凹槽结构的形核均匀区为80%,形核区与未形核区的比例与径向上等离子体分布接近一致。结论 在偏压形核过程中,样品表面有高密度等离子体分布有利于金刚石形核,样品表面的等离子体均匀分布有利于提升金刚石异质外延偏压形核均匀性。
英文摘要:
      Single crystal diamond has excellent electrical properties. Heteroepitaxy is an important method for preparation of single crystal diamond. High-density and high-orientation diamond nucleation is the key to obtain heteroepitaxial large-size diamond single crystal films, and the bias-enhanced nucleation method is the main technology for high-density nucleation. COMSOL Multiphysics is used to construct a multi-physical field (plasma field, electromagnetic field, and fluid heat transfer field) coupling model. Based on the negative substrate bias, the structure substrates of the single-concave-groove, the double-concave-groove, the single-convex-groove, and the double-convex-groove are simulated respectively. In the radial direction, the radial cross section at 1 mm above the substrate surface is selected for research. In the axial direction, the axial cross sections perpendicular to the substrate at the center and both ends of the groove are selected for research. Data of the radial cross section and the axial cross sections are used to compare and analyze the influence of the substrate structure on the uniformity of plasma distribution. The accuracy of the model is verified by scanning microscope characterization of diamond heteroepitaxial bias nucleation. The simulation results show that the high-density plasma is evenly distributed at 2 mm from the center in the radial direction of the double-convex-groove structure. The plasma density at 2-5 mm from the center in the radial direction gradually decreases, and the plasma density at other positions in the radial direction approaches zero. The plasma density in the axial direction of the double-convex-groove structure is reduced by half from the center to the edge. The plasma distribution in the radial direction of the single-concave-groove structure shows that the plasma density at two ends are slightly higher than that at the center, and the electron density distribution in the axial direction is basically the same. It shows that the plasma of the double-convex-groove structure has the worst distribution uniformity in the radial and axial directions, and the plasma of the single-concave-groove structure substrate has the best distribution uniformity in the radial and axial directions. The experimental results show that the diamond nucleation does not occur at the plasma density of the double-convex-groove structure substrate approaching zero. The nucleation area and the non-nucleation area of the double-convex-groove are 37% and 63%, respectively. The double-convex-groove structure has a high density plasma region of about 40% in the radial direction. The simulated high-density plasma region and the nucleation region are almost equal. The uniform nucleation area of the double-convex-groove structure is 17%, and the uniform nucleation area of the single-concave-groove structure is 80%. The ratio of the nucleation uniform zone of the single-concave-groove structure to the double-concave-groove structure is 4.7. In the radial direction, the plasma uniform distribution areas of the single-concave-groove structure and the double-convex-groove structure are 20% and 98%, respectively. The ratio of the plasma uniform region of the single-concave-groove structure and the double-concave-groove structure is 4.9. The ratio of the simulated plasma uniform distribution area to the experimental nucleation uniform area is close to equal. Therefore, the high density plasma distribution on the surface of the sample during the bias nucleation process is conducive to diamond nucleation, and the uniform distribution of plasma on the surface of the sample is conducive to improving the uniformity of bias nucleation of diamond heteroepitaxy.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27971002位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号