刘凯华,许汉威,关朝亮,孙梓洲.高精度芯轴控时磨削去除函数优化研究[J].表面技术,2025,54(8):180-190. LIU Kaihua,XU Hanwei,GUAN Chaoliang,SUN Zizhou.Optimization of Time-controlled Grinding Removal Function for High-precision Spindle Mandrel[J].Surface Technology,2025,54(8):180-190 |
高精度芯轴控时磨削去除函数优化研究 |
Optimization of Time-controlled Grinding Removal Function for High-precision Spindle Mandrel |
投稿时间:2024-07-26 修订日期:2025-01-26 |
DOI:10.16490/j.cnki.issn.1001-3660.2025.08.016 |
中文关键词: 控时磨削 主轴芯轴 去除函数优化 确定性修形 圆柱度误差 圆度误差 |
英文关键词:time-controlled grinding spindle mandrel removal function optimization deterministic figuring cylindricity error roundness error |
基金项目:湖南省科技创新计划资助(2023GK1060) |
作者 | 单位 |
刘凯华 | 国防科技大学 智能科学学院,长沙 410073;超精密加工技术湖南省重点实验室,长沙 410073;装备状态感知与敏捷保障全国重点实验室,长沙 410073 |
许汉威 | 国防科技大学 智能科学学院,长沙 410073;超精密加工技术湖南省重点实验室,长沙 410073;装备状态感知与敏捷保障全国重点实验室,长沙 410073 |
关朝亮 | 国防科技大学 智能科学学院,长沙 410073;超精密加工技术湖南省重点实验室,长沙 410073;装备状态感知与敏捷保障全国重点实验室,长沙 410073 |
孙梓洲 | 国防科技大学 智能科学学院,长沙 410073;超精密加工技术湖南省重点实验室,长沙 410073;装备状态感知与敏捷保障全国重点实验室,长沙 410073 |
|
Author | Institution |
LIU Kaihua | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;Hunan Key Laboratory of Ultra-precision Machining Technology, Changsha 410073, China;National Key Laboratory of Equipment State Sensing and Smart Support, Changsha 410073, China |
XU Hanwei | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;Hunan Key Laboratory of Ultra-precision Machining Technology, Changsha 410073, China;National Key Laboratory of Equipment State Sensing and Smart Support, Changsha 410073, China |
GUAN Chaoliang | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;Hunan Key Laboratory of Ultra-precision Machining Technology, Changsha 410073, China;National Key Laboratory of Equipment State Sensing and Smart Support, Changsha 410073, China |
SUN Zizhou | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;Hunan Key Laboratory of Ultra-precision Machining Technology, Changsha 410073, China;National Key Laboratory of Equipment State Sensing and Smart Support, Changsha 410073, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 控时磨削技术通过控制磨削工具在工件表面不同位置的驻留时间来实现确定性修形。该技术摆脱了传统机床“精度复印”原理的限制,可显著提高芯轴加工精度。但多次迭代加工后,精度收敛比显著降低。从去除函数优化角度出发,旨在进一步提高芯轴加工精度。方法 首先构建不同的去除函数模型,通过加工仿真分析去除函数的形状和尺寸对加工精度的影响规律,提出了基于去除函数优化的精度提升方法。随后改进控时磨削装置,通过实验制作了4个轴向长度不同的控时磨削去除函数,并分析了其修形能力。最后采用4个去除函数在Ⅰ号芯轴上的4个区域进行对比修形实验,并选用最优去除函数对Ⅱ号芯轴进行修形实验,验证优化后去除函数的加工效果。结果 随着去除函数轴向长度的减小,Ⅰ号芯轴4个区域的加工精度存在先迅速提升后缓慢提升的规律,与仿真结果吻合。其中,最优去除函数加工后的平均圆度误差从0.209 μm收敛至0.148 μm,圆柱度误差从0.464 μm收敛至0.396 μm,较优化前精度进一步提升。Ⅱ号芯轴的平均圆度误差从0.182 μm收敛至0.102 μm,圆柱度误差从0.566 μm收敛至0.370 μm,显著提高了芯轴的加工精度。结论 通过优化控时磨削去除函数,能够进一步提升迭代加工精度,为芯轴高精度加工提供了理论与技术支持。 |
英文摘要: |
The time-controlled grinding technology achieves deterministic figuring by precisely controlling the residence time of the grinding tool at different positions on the workpiece surface. This technology overcomes the limitations of the "precision copying" principle inherent in traditional machine tools, significantly enhancing the machining accuracy of mandrels. However, during the iterative machining process of time-controlled grinding, the single-pass accuracy convergence ratio exhibits a notable decreasing trend, eventually approaching a limit value. To address this issue, this study focuses on optimizing the removal function to further improve the machining accuracy of mandrels. Firstly, based on the principles of time-controlled grinding for mandrels, the morphological characteristics of existing removal functions are analyzed. A total of 1 596 removal function models with varying shapes and sizes are constructed and used to simulate the machining of mandrels with identical initial surface errors. Based on the simulation results, the influence of the shape and size of the removal function on machining accuracy are analyzed, leading to the proposal of a novel method to optimize the time-controlled grinding removal function by reducing its axial length, thereby enhancing the machining accuracy of mandrels. Secondly, key factors affecting the axial length of the removal function are identified through analyzing the time-controlled grinding device, and the time-controlled grinding device is improved by reducing the width of the contact wheel. Based on this, four contact wheels with widths values of 8, 12, 16, and 20 mm are fabricated, and four experimental models of time-controlled grinding removal functions with varying axial lengths are established. The error correction capabilities of these removal functions are analyzed using the normalized Fourier spectrum method. The results indicate that the removal function with the smallest axial length exhibits the best error correction capability. Finally, comparative machining experiments are conducted on four regions of the No.Ⅰmandrel, which nearly reaches its accuracy limit under existing conditions, using the four removal functions. Additionally, the removal function with the best machining performance is selected to perform reshaping experiments on the No.Ⅱmandrel to validate the effectiveness of the optimized removal function. The experimental results show that as the axial length of the removal function decreases, the machining accuracy of the four regions of the No.Ⅰmandrel follows a pattern of rapid initial improvement followed by gradual enhancement, consistent with the simulation results. Specifically, the average roundness error in the machining area of the removal function with the smallest axial length decreases from 0.209 μm to 0.148 μm (convergence ratio:1.41), and the cylindricity error decreases from 0.464 μm to 0.396 μm (convergence ratio:1.17), representing a significant improvement over pre-optimization levels. For the No.Ⅱmandrel, its average roundness error decreases from 0.182 μm to 0.102 μm (convergence ratio:1.78), and its cylindricity error decreases from 0.566 μm to 0.370 μm (convergence ratio:1.53), further demonstrating the effectiveness of the optimized removal function. The research findings demonstrate that optimizing the time-controlled grinding removal function by reducing its axial length can significantly enhance the iterative machining accuracy of mandrels, providing a new theoretical and technical support for machining of high-precision mandrels. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|