娄云天,余志豪,常卫卫,钱鸿昌,郭达伟,张达威.搅拌摩擦沉积固态增材AA6061铝合金不同沉积层腐蚀行为研究[J].表面技术,2025,54(8):84-95.
LOU Yuntian,YU Zhihao,CHANG Weiwei,QIAN Hongchang,Guo,Dawei,ZHANG Dawei.Corrosion Behaviour of Different Deposition Layers in AA6061 Aluminum Alloy Produced via Additive Friction Stir Deposition[J].Surface Technology,2025,54(8):84-95
搅拌摩擦沉积固态增材AA6061铝合金不同沉积层腐蚀行为研究
Corrosion Behaviour of Different Deposition Layers in AA6061 Aluminum Alloy Produced via Additive Friction Stir Deposition
投稿时间:2025-03-26  修订日期:2025-04-12
DOI:10.16490/j.cnki.issn.1001-3660.2025.08.007
中文关键词:  搅拌摩擦沉积固态增材  铝合金  金属间化合物  腐蚀行为
英文关键词:additive friction stir deposition  aluminum alloy  intermetallic compound  corrosion behavior
基金项目:广东省基础与应用基础研究基金(2021B1515130009)
作者单位
娄云天 北京科技大学 新材料技术研究院,北京 100083;北京科技大学 顺德创新学院,广东 佛山 528399 
余志豪 北京科技大学 新材料技术研究院,北京 100083;北京科技大学 顺德创新学院,广东 佛山 528399 
常卫卫 北京科技大学 新材料技术研究院,北京 100083;北京科技大学 顺德创新学院,广东 佛山 528399 
钱鸿昌 北京科技大学 新材料技术研究院,北京 100083;北京科技大学 顺德创新学院,广东 佛山 528399 
郭达伟 广东横琴澳质研科技发展有限公司,广东 珠海 519060 
张达威 北京科技大学 新材料技术研究院,北京 100083;北京科技大学 顺德创新学院,广东 佛山 528399 
AuthorInstitution
LOU Yuntian Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;Shunde Innovation School, University of Science and Technology Beijing, Guangdong Foshan 528399, China 
YU Zhihao Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;Shunde Innovation School, University of Science and Technology Beijing, Guangdong Foshan 528399, China 
CHANG Weiwei Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;Shunde Innovation School, University of Science and Technology Beijing, Guangdong Foshan 528399, China 
QIAN Hongchang Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;Shunde Innovation School, University of Science and Technology Beijing, Guangdong Foshan 528399, China 
Guo,Dawei IDQ Science and Technology Development Hengqin, Guangdong Co., Ltd., Guangdong Zhuhai 519060, China 
ZHANG Dawei Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;Shunde Innovation School, University of Science and Technology Beijing, Guangdong Foshan 528399, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究增材摩擦搅拌沉积(Additive Friction Stir Deposition,AFSD)工艺及T6热处理对AA6061铝合金多层沉积样件不同层位金属间化合物分布及其耐蚀性能的影响。方法 采用AFSD工艺制备AA6061铝合金沉积试样,并对其进行T6热处理。分别从上、中、下层取样,结合扫描电子显微镜(SEM)、能谱分析(EDS)、和ImageJ图像处理,研究各层析出相的种类与分布特征。通过电化学阻抗谱(EIS)分析腐蚀行为,并辅以XRD与CLSM等手段表征腐蚀产物和腐蚀坑形貌。结果 固态增材试样和热处理后的试样内部主要包含Mg2Si和AlFeSi两种金属间化合物。与母材棒相比,AA6061铝合金增材试样内部金属间化合物尺寸明显细化,分布更加均匀且数量显著增加。热处理后金属间化合物的数量相比热处理前有所减少,但仍多于母材棒中的数量。由于靠下的沉积层中所受热循环次数较多,析出的金属间化合物数量明显多于上层。电化学测试结果表明,热处理前后试样的电化学阻抗结果呈现出上层>中层>下层的规律性分布。热处理导致部分金属间化合物重新融入固溶体相,热处理试样的耐蚀性明显好于热处理前的增材试样。腐蚀形貌分析也表明,下层沉积层经过浸泡实验后点腐蚀最为严重。结论 AFSD试样中Mg2Si和AlFeSi析出相从上层到下层分布不均,且下层耐蚀性最差。T6热处理可减少析出相,提升耐蚀性。在实际应用中,应根据工况合理评估耐蚀性差异,优先使用T6热处理后的上层沉积区,还可结合表面防护涂层增强耐蚀能力。研究突破了以往单一性能研究的局限,创新性地从金属间化合物分布、电化学阻抗和腐蚀形貌等多个维度系统地研究了热处理前后增材试样的性能变化,以上研究结果为进一步理解AFSD固态增材铝合金腐蚀行为、开展相关的耐蚀性调控提供了数据支撑。
英文摘要:
      Solid-state additive manufacturing is an advanced fabrication technology that does not rely on material melting. It primarily includes techniques such as ultrasonic additive manufacturing, cold spray additive manufacturing, and additive friction stir deposition (AFSD). Among these, AFSD combines the principles of friction stirring with continuous material feeding to create a unique solid-state and low-temperature additive process. Compared with conventional fusion-based additive manufacturing, the low thermal input and extensive plastic deformation in AFSD promote the formation of fine equiaxed microstructures and defect-free interiors, thereby significantly enhancing the mechanical properties of the fabricated parts. In addition, AFSD can be carried out in open environments and is easily scalable, making it particularly suitable for the fabrication and repair of large-scale components. At present, AFSD remains the only metal additive manufacturing technique capable of achieving mechanical properties comparable to forging. In recent years, the AFSD process has become increasingly mature and has been widely applied in the solid-state additive manufacturing of aluminum alloys, especially gaining significant attention in studies on 6xxx series alloys. This study investigates the effects of additive friction stir deposition (AFSD) and subsequent T6 heat treatment on the distribution of intermetallic compounds and the corrosion resistance across different layers of multilayer-deposited AA6061 aluminum alloy. AA6061 aluminum alloy coupons are fabricated using the AFSD process and then subject to T6 heat treatment. Samples are taken from the upper, middle, and lower layers. The type and distribution of intermetallic precipitates are analyzed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and ImageJ image processing. Corrosion behavior is characterized by electrochemical impedance spectroscopy (EIS), while corrosion products and pit morphologies are examined by X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). The as-deposited and heat-treated samples mainly contain Mg2Si and AlFeSi intermetallic compounds. Compared with the base metal, the intermetallic phases in the AFSD samples are significantly refined, more uniformly distributed, and markedly increased in number. After heat treatment, the amount of intermetallic compounds is reduced but remains higher than that in the base metal. Due to the greater thermal cycling experienced by the lower layers during deposition, a larger number of precipitates are observed in these regions. Electrochemical tests reveal a layer-dependent corrosion resistance, following the trend upper > middle > lower. Heat-treated samples exhibit improved corrosion resistance owing to the partial dissolution of intermetallic back into the solid solution. Corrosion morphology also confirms that the lower layers show the most severe pitting after immersion. The Mg2Si and AlFeSi precipitates in AFSD samples exhibit non-uniform distribution along the build direction, with the lower layers showing the poorest corrosion resistance. T6 heat treatment reduces the amount of precipitates and enhances corrosion performance. In practical applications, corrosion resistance variation should be carefully evaluated based on service conditions, with preference given to the upper heat-treated regions. Additional surface coatings may further enhance corrosion protection. This work goes beyond previous studies that focus on single performance metrics, offering a comprehensive investigation into the evolution of intermetallic, electrochemical behavior, and corrosion morphology before and after heat treatment. The findings provide valuable insights for understanding corrosion mechanisms and optimizing corrosion resistance in AFSD-processed aluminum alloys.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27970311位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号