程涛涛,吴治兵,蒋家有于,曹雨函,马梁,张莹.“砖-泥”结构陶瓷封严涂层横向裂纹扩展抑制机理[J].表面技术,2025,54(7):212-224.
CHENG Taotao,WU Zhibing,JIANG Jiayouyu,CAO Yuhan,MA Liang,ZHANG Ying.Inhibition Mechanism of Transverse Crack Propagation in Ceramic Sealing Coating with "Brick-Mud" Structure[J].Surface Technology,2025,54(7):212-224
“砖-泥”结构陶瓷封严涂层横向裂纹扩展抑制机理
Inhibition Mechanism of Transverse Crack Propagation in Ceramic Sealing Coating with "Brick-Mud" Structure
投稿时间:2024-08-13  修订日期:2024-11-25
DOI:10.16490/j.cnki.issn.1001-3660.2025.07.018
中文关键词:  “砖-泥”结构  热循环失效  孔隙“吸引”效应  应力再分布  应力集中  横向裂纹扩展
英文关键词:
.$p.#$TAB表 面 技 术#$TAB2025年4月
基金项目:中央高校基本科研业务费自然科学重点项目(3122025081)
作者单位
程涛涛 中国民航大学 理学院,天津 300300;天津市民用航空器适航与维修重点实验室,天津 300300 
吴治兵 航空工程学院,天津 300300 
蒋家有于 航空工程学院,天津 300300 
曹雨函 天津市民用航空器适航与维修重点实验室,天津 300300 
马梁 航空工程学院,天津 300300 
张莹 航空工程学院,天津 300300 
AuthorInstitution
CHENG Taotao College of Science Tianjin 300300, China ;Key Laboratory of Civil Aircraft Airworthiness and Maintenance Tianjin 300300, China 
WU Zhibing College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 
JIANG Jiayouyu College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 
CAO Yuhan Key Laboratory of Civil Aircraft Airworthiness and Maintenance Tianjin 300300, China 
MA Liang College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 
ZHANG Ying College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 热循环下过早的剥落失效是陶瓷基封严涂层目前面临的瓶颈问题。选取“砖-泥”结构涂层为研究对象,基于孔隙“吸引”效应,探究该涂层横向裂纹扩展抑制机理,为解决涂层易于热循环剥落失效的问题提供参考。方法 采用有限元仿真计算方法,建立不同孔隙半径的“泥”层模型,分析不同“泥”层模型在热循环条件下的应力场及横向裂纹扩展行为。结果 在“泥”层中引入的孔隙具有“应力再分布”功能和“应力集中”功能。含孔隙“泥”层的应力集中位置由无孔隙时的“砖”层/“泥”层界面处转移至孔隙周围,并且应力场作用区域显著缩小;与原始“泥”层相比,含孔隙“泥”层模型承受的最大拉伸应力(σ22 max)和最大剪切应力(σ12 max)显著提高。孔隙半径分别为1、2、3、4 µm的“泥”层模型中横向裂纹扩展长度分别减小了84.3%、54.8%、51.5%、59.5%,能量耗散水平分别降低了98.5%、62.7%、91.1%、86.9%。当孔隙半径从0 µm增至1 µm时,针对横向裂纹扩展的抑制效果最为显著。结论 孔隙具有“应力再分布”功能和“应力集中”功能,它在热循环过程中表现出“裂纹吸引”效应,从而改变了裂纹的扩展方向,并且抑制了裂纹的连续扩展。
英文摘要:
      As one of the core technologies of aero-engine, ceramic high-temperature seal coating technology has been widely applied to make aerospace materials. Such coatings face a bottleneck of early spalling failure under thermal cycle conditions. The work aims to take brick-mud structured coating as the research object and explore the effect of pore size on the thermal cycle performance of ceramic brick- mud structured seal coatings based on the pore suction effect, so as to optimize the microstructure of the coating and provide a reference for solving early spalling failure. Finite Element Simulation is used to establish mud layer models with different pore radii (0, 1, 2, 3, 4 µm). The stress field and transverse crack propagation behavior of the mud layer models with different pore sizes under thermal cycle conditions are analyzed. The introduction of pores in the mud' layer has the functions of stress redistribution and stress concentration . The stress concentration position in the mud layer with pores shifts from the brick-mud interface in the pore-free state to the vicinity of the pores. Additionally, the stress field action area significantly decreases. Compared with the original mud layer, the maximum tensile stress (σ22 max) and the maximum shear stress (σ12 max) of the mud layer model with pores significantly increase. Meanwhile, the transverse crack propagation length in the mud layer models with pore radii of 1, 2, 3, and 4 µm decreases by 84.3%, 54.8%, 51.5%, and 59.5%, respectively. At the same time, the energy dissipation level decreases by 98.5%, 62.7%, 91.1%, and 86.9%, respectively. When the pore radius increases from 0 µm to 1 µm, the reduction in transverse crack length is the most significant. Similarly, the reduction in energy dissipation is also the most significant. Because of the stress redistribution and stress concentration , the pores exhibit a crack attraction effect during thermal cycle. As a result, the crack propagation direction is changed and the continuous crack propagation is inhibited. The stress field of the mud layer model with pores is mainly affected by the coupling effect of three factors, namely, brick layer pores, mud layer pore radius, and the thermal expansion and contraction of porous materials. As a result, as the pore radius increases, the crack propagation path in the model with pores exhibits distinct evolution patterns. Among them, small pores with a radius of 1 µm have the weakest stress field for transverse crack propagation driven by thermal cycle, which makes the T1 model have the shortest transverse crack propagation path and the lowest energy dissipation level.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29785023位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号