尤锦鸿,章武林,成煜,贾丹,詹胜鹏,段海涛.高性能多孔磨具造孔方法及性能研究进展[J].表面技术,2025,54(7):50-67.
YOU Jinhong,ZHANG Wulin,CHENG Yu,JIA Dan,ZHAN Shengpeng,DUAN Haitao.Research Progress on Pore-forming Methods of High Performance Porous Grinding Tools[J].Surface Technology,2025,54(7):50-67
高性能多孔磨具造孔方法及性能研究进展
Research Progress on Pore-forming Methods of High Performance Porous Grinding Tools
投稿时间:2024-09-05  修订日期:2024-11-25
DOI:10.16490/j.cnki.issn.1001-3660.2025.07.004
中文关键词:  磨削技术  多孔磨具  造孔方法  孔隙设计  磨削性能
英文关键词:grinding technology  porous grinding tools  pore-forming method  pore design  grinding performance
基金项目:国家自然科学基金青年科学基金(52405227);中国博士后科学基金(2022M721302);湖北隆中实验室自主创新研究项目(2022ZZ-05)
作者单位
尤锦鸿 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
章武林 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
成煜 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
贾丹 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
詹胜鹏 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
段海涛 中国机械总院集团武汉材料保护研究所有限公司 特种表面保护材料及应用技术国家重点实验室,武汉 430030;湖北隆中实验室,湖北 襄阳 441106 
AuthorInstitution
YOU Jinhong State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
ZHANG Wulin State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
CHENG Yu State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
JIA Dan State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
ZHAN Shengpeng State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
DUAN Haitao State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection Co., Ltd., CAM, Wuhan 430030, China;Hubei Longzhong Laboratory, Hubei Xiangyang 441106, China 
摘要点击次数:
全文下载次数:
中文摘要:
      高性能(高强度、高效率、高耐磨、高表面质量等)磨具材料作为磨床装备的“牙齿”,是先进磨削技术(高精度、(超)高速、高载、大切深)高质量发展的基石。磨具材料的孔隙结构可有效促进磨屑迁移、调控磨削产热/散热,因而孔隙结构的科学设计、可控制备是提升磨具材料综合性能的重要途径。针对目前磨具材料在造孔工艺优选、气孔结构控制及气孔调控磨削行为机理等方面存在的不足,重点阐述了不同类型造孔工艺的成孔机理,总结了去除法、空心球法、增材法等3种造孔方法制备气孔结构的特点和优势,讨论了磨具制备过程中不同类型造孔方法与金属、陶瓷、树脂等结合剂磨具在力学性能、磨削性能方面的适配特性。总结了结合剂、气孔类型、气孔率复合作用对多孔磨具力学性能、磨削性能的影响规律;阐明了气孔结构对磨削工件表面质量演变的作用机理。最后展望了高性能多孔磨具的发展方向,指出孔隙精细可控制备、孔隙功能仿真分析技术、多孔磨具标准化评价体系、新型高性能磨具材料智能化有利于高性能磨具的高效设计与研发。
英文摘要:
      Advanced grinding technology is a vital component of contemporary advanced manufacturing, acting as a crucial support for industries that demand high precision and efficiency. As this technology progresses towards ultra-high-speed and high-load applications, large depth-of-cut capabilities, and high-precision grinding, the performance requirements for grinding tools have noticeably intensified. To fulfill these evolving demands, grinding tools must exhibit exceptional strength, good self-sharpening properties, high wear resistance, excellent dynamic balance, and superior grinding quality. Porous grinding tools, known for their high precision, high efficiency, and exceptional grinding quality, are essential for achieving advanced grinding processes. The work addresses the current challenges associated with the fabrication of porous grinding tools, emphasizing the selection of optimal pore-forming methods, the control of pore structure types, and the evaluation of pore effects. It elaborates on the mechanisms behind various pore-forming techniques and summarizes the characteristics and advantages of three primary methods:the removal method, the hollow-sphere method, and the additive method. The removal method enables a high open-porosity ratio, which results in excellent debris collection and heat dissipation properties. The hollow-sphere method produces uniformly distributed and consistently sized pores, thereby mitigating the negative effects of pores on the structural integrity of the grinding tool. Lastly, the additive method represents a novel approach, offering the ability to customize pore shapes and locations while preserving the benefits of the other methods. Additionally, the work reviews the compatibility of molding methods and pore-forming techniques with the three types of bonding agent materials (metal, ceramic, and resin). It recommends suitable pore-forming methods for each bonding agent type and discusses how these methods affect the mechanical and grinding performance of the tools. The work delves into the combined effects of bonding agent types, pore structures, and porosity on the performance of porous grinding tools. The bonding agent and the integrity of the tool's matrix are critical in determining the overall strength of the grinding tool. While the introduction of pores in the tools enhances grinding performance, it inevitably affects the tool's mechanical properties. Selecting an appropriate pore-forming method based on the bonding agent type is crucial. For metal or ceramic bonding agents grinding tools, increasing the open porosity can significantly improve grinding performance. In contrast, for resin bonding agent grinding wheels, which tend to have lower mechanical strength, uniformly distributed and regularly shaped pores can effectively mitigate the negative impact of increased porosity on the mechanical integrity of the matrix. A thorough consideration of the interactions among the bonding agent type, pore structure, and porosity enables the optimization of performance trade-offs. Additionally, the work highlights the excellent effects of high-performance porous grinding tools in optimizing the surface characteristics of machined workpieces, emphasizing their role in improving surface quality and overall machining efficiency. The presence of pores aids in heat dissipation during the grinding process by facilitating the removal of grinding heat along with debris, thereby lowering grinding temperatures and mitigating subsurface damage to the workpiece. This effectively minimizes the risk of thermal damage, such as surface burns on the workpiece. Furthermore, the pores in the grinding tool promote the exposure of abrasive grains, enhancing the tool's self-sharpening capabilities and increasing its cutting efficiency. The work concludes with a forward-looking perspective on the development of high-performance porous grinding tools. It emphasizes the significance of technology for precise and controllable pore preparation, modeling and simulation technology for exploring pore effects, the establishment of a comprehensive evaluation system for high-performance grinding tools, and intelligent development of new high-performance tool materials. These elements are essential for the design and advancement of cutting-edge grinding tools.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29785023位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号