焦硕沛,张旭芳,李明坤,张雪恰,张静.金刚石等离子体刻蚀技术研究进展[J].表面技术,2025,54(7):34-49.
JIAO Shuopei,ZHANG Xufang,LI Mingkun,ZHANG Xueqia,ZHANG Jing.Research Progress on Diamond Plasma Etching Technique[J].Surface Technology,2025,54(7):34-49
金刚石等离子体刻蚀技术研究进展
Research Progress on Diamond Plasma Etching Technique
投稿时间:2024-07-22  修订日期:2025-01-18
DOI:10.16490/j.cnki.issn.1001-3660.2025.07.003
中文关键词:  金刚石  等离子体刻蚀  微纳加工  金属催化  图案化  激光诱导
英文关键词:diamond  plasma etching  micro nano processing  metal-catalyzed  patterning  laser-induced
基金项目:国家自然科学基金资助项目(62304005);北方工业大学校内专项(110051360024XN147-07/150-23/245/246)
作者单位
焦硕沛 北方工业大学 信息学院,北京 100144 
张旭芳 北方工业大学 信息学院,北京 100144 
李明坤 北方工业大学 信息学院,北京 100144 
张雪恰 北方工业大学 信息学院,北京 100144 
张静 北方工业大学 信息学院,北京 100144 
AuthorInstitution
JIAO Shuopei School of Information Science and Technology, North China University of Technology, Beijing 100144, China 
ZHANG Xufang School of Information Science and Technology, North China University of Technology, Beijing 100144, China 
LI Mingkun School of Information Science and Technology, North China University of Technology, Beijing 100144, China 
ZHANG Xueqia School of Information Science and Technology, North China University of Technology, Beijing 100144, China 
ZHANG Jing School of Information Science and Technology, North China University of Technology, Beijing 100144, China 
摘要点击次数:
全文下载次数:
中文摘要:
      金刚石因其优越的电学、物理及化学性质,如超宽的禁带宽度、高硬度、高热导率和高稳定性,被广泛应用于电子器件、光学元件及微机电系统(MEMS)等领域。然而,由于其高度稳定的物理和化学性质,使得金刚石的加工具有极大的挑战性。在众多金刚石刻蚀方法中,等离子体刻蚀技术因其高精度和低损伤的优势,成为金刚石微加工的重要手段。综述了不同类型等离子体刻蚀金刚石的研究进展,分别介绍了氧等离子体、氢等离子体以及其他混合气体的刻蚀特点,详细阐明了各种等离子体刻蚀金刚石的刻蚀机理。此外,还分析了影响刻蚀的主要因素,包括气压、功率、温度和金刚石类型等,这些参数共同决定了刻蚀的速率、粗糙度和选择比。最后,探讨了等离子体刻蚀拓展工艺的研究进展,说明了激光诱导等离子体刻蚀的工作原理和其在金刚石加工领域的应用前景,以及金属催化等离子体刻蚀的刻蚀机理及此方法在金刚石薄膜图案化上的应用前景。通过总结不同刻蚀气体及工艺参数对刻蚀效果的影响,本文旨在为实现对金刚石的精确刻蚀提供理论依据,并为不同用途的金刚石器件的制备提供参考。最后,展望了等离子体刻蚀技术在金刚石微纳加工领域的未来发展方向,包括新型刻蚀气体的探索、与其他加工技术的结合以及工艺参数的进一步优化。
英文摘要:
      Diamond is widely used in high-power electronic devices, optical components, biomedical tools, micro-electromechanical systems (MEMS) and many other fields due to its excellent electrical, physical and chemical properties such as ultra-wide bandgap, high thermal conductivity, excellent hardness and chemical stability. However, although these properties give diamond significant advantages in applications, they bring huge challenges to its processing. Among many processing techniques, plasma etching has become a key method for diamond micromachining due to its characteristics of high precision, controllability and low damage. This study reviews the latest progress in diamond plasma etching techniques focusing on analyzing the characteristics of oxygen plasma, hydrogen plasma and mixed gas plasma. Oxygen is the main gas for diamond plasma etching. Oxygen plasma etching enables to achieve rapid removal of diamond by reacting with the diamond surface to generate volatile gaseous compounds (such as CO and CO2). However, preferential etching by oxygen plasma at defects is likely to cause an increase in surface roughness, which limits its application in scenarios that require smooth surfaces. In contrast, hydrogen plasma etching has significant advantages in reducing surface roughness and achieving surface planarization. Hydrogen plasma can dramatically reduce the roughness of diamond surfaces by generating and desorbing hydrocarbons. Hydrogen-oxygen mixed plasma etching can combine the etching effect of oxygen and the surface reconstruction mechanism of hydrogen, which has been widely used in diamond pretreatment. Other mixed gas plasmas (such as CF4/O2 and Ar/O2) are also extensively employed in diamond microstructure processing. The CF4/O2 mixed gas not only significantly increases the etching rate, but also reduces the surface roughness by reducing the micro-masking effect. The Ar/O2 mixed gas balances the chemical etching effect of oxygen through the physical sputtering of argon gas, reducing the preferential etching of defective areas and further improving surface smoothness. These characteristics make mixed gas etching excellent in processing complex microstructures. In this review, parameters that affect etching results, including plasma power, gas pressure, temperature, and gas composition, are also analyzed. These parameters determine the etch rate, surface roughness and anisotropy. Specifically, increasing plasma power often increases the energy of reactive particles, thereby increasing the etching rate. In addition, innovative processes such as laser-induced plasma-assisted etching (LIPAA) and metal-catalyzed plasma etching are also explored. LIPAA reduces the energy threshold of traditional laser etching and improves material removal efficiency through the synergistic effects of laser ablation and plasma chemical reactions. Metal-catalyzed plasma etching uses transition metals such as iron (Fe) or nickel (Ni) to achieve high-precision patterning through local graphitization at high temperature, and can process complex microstructures without traditional masks. This paper provides a reference for optimizing diamond processing by summarizing the effects of different gases and process parameters on etching effects. Future research directions include the development of new plasma gases, combination with other processing techniques, and improvement of process scale capabilities to further expand the industrial application of plasma etching. These advances will open up new prospects for diamond applications in high-power electronics, advanced optics and next-generation MEMS technology.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29785050位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号