徐成宇,王永华,焦远东,于化东,弯艳玲,张倩.仿生鲨鱼皮表面的快速制备和减阻性能研究[J].表面技术,2025,54(5):72-82. XU Chengyu,WANG Yonghua,JIAO Yuandong,YU Huadong,WAN Yanling,ZHANG Qian.Rapid Preparation and Drag Reduction Properties of Bionic Shark Skin Surfaces[J].Surface Technology,2025,54(5):72-82 |
仿生鲨鱼皮表面的快速制备和减阻性能研究 |
Rapid Preparation and Drag Reduction Properties of Bionic Shark Skin Surfaces |
投稿时间:2024-03-14 修订日期:2024-08-12 |
DOI:10.16490/j.cnki.issn.1001-3660.2025.05.005 |
中文关键词: 仿生 鲨鱼皮 激光加工 线切割 铝合金 数值模拟 |
英文关键词:bionic shark skin laser processing EDM wire cutting aluminum alloy numerical simulation |
基金项目:国家自然科学基金项目(52175264);吉林省科学技术厅项目(20220201054GX,YDZJ202301ZYTS490);重庆市自然科学基金项目(CSTB2022NSCQMSX0506,CSTB2022NSCQ-MSX1643) |
作者 | 单位 |
徐成宇 | 长春理工大学重庆研究院,重庆 404100;长春理工大学 机电工程学院,长春 130000 |
王永华 | 长春理工大学 机电工程学院,长春 130000;跨尺度微纳制造教育部重点实验室,长春 130000 |
焦远东 | 长春理工大学 机电工程学院,长春 130000;跨尺度微纳制造教育部重点实验室,长春 130000 |
于化东 | 长春理工大学 机电工程学院,长春 130000;跨尺度微纳制造教育部重点实验室,长春 130000 |
弯艳玲 | 长春理工大学 机电工程学院,长春 130000;跨尺度微纳制造教育部重点实验室,长春 130000 |
张倩 | 长春理工大学 机电工程学院,长春 130000;跨尺度微纳制造教育部重点实验室,长春 130000 |
|
Author | Institution |
XU Chengyu | Chongqing Research Institute of Changchun University of Science and Technology, Chongqing 404100, China;School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China |
WANG Yonghua | School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China;Key Laboratory of Cross-scale Micro and Nano Manufacturing, Changchun 130000, China |
JIAO Yuandong | School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China;Key Laboratory of Cross-scale Micro and Nano Manufacturing, Changchun 130000, China |
YU Huadong | School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China;Key Laboratory of Cross-scale Micro and Nano Manufacturing, Changchun 130000, China |
WAN Yanling | School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China;Key Laboratory of Cross-scale Micro and Nano Manufacturing, Changchun 130000, China |
ZHANG Qian | School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130000, China;Key Laboratory of Cross-scale Micro and Nano Manufacturing, Changchun 130000, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 探究在铝合金表面制备仿生鲨鱼皮盾鳞结构的方法,检验采用复合加工方法制备的鲨鱼皮盾鳞结构在水下的减阻性能,为构建仿生表面提供一种新的思路。方法 采用激光与电火花线切割复合加工的方法,分2步构建仿生盾鳞结构。第一步,将基体表面与线切割机床的钼丝呈45°夹角接触,仿制盾鳞的轮廓绘制切割路径,设置每个盾鳞的间距为0.65 mm、高度为0.4 mm。第一次切割完成后,将工件旋转90°,继续按照相同的方式切割,至此仿生鲨鱼皮盾鳞一级结构制备完成。第二步,使用纳秒激光打标机在一级结构表面刻蚀微沟槽形貌,设置激光扫描路径间距为0.08 mm、激光功率为12 W、扫描速度为100 mm/s,激光加工完成后,仿生鲨鱼皮盾鳞二级结构制备完成。减阻试验部分基于流动滑移理论,在COMSOL中对阵列的结构模拟计算,对比了光滑表面、一级盾鳞结构表面与仿生盾鳞的二级结构表面,分别观测其壁面切应力、表面黏性应力以及速度流线。结果 盾鳞倾斜角度为13°、盾鳞表面沟槽间距为0.17 mm、沟槽深度为0.08 mm时的壁面切应力最小。一级盾鳞结构表面与二级仿生盾鳞结构表面在速度流线图中均显示一定的减阻性能,二者之间的差异在于后者的流线更加稳定。在减阻试验中,盾鳞倾斜角度16°、盾鳞沟槽间距0.17 mm、沟槽深度0.08 mm,减阻率可达35%左右。结论 通过激光与线切割复合加工方法制备的仿生鲨鱼皮盾鳞结构表面具有优异的水下减阻性能。加工出合适的盾鳞倾斜角度、沟槽间距与沟槽深度能够有效提高仿生表面的减阻性能。 |
英文摘要: |
The work aims to investigate the method of preparing a bionic shark skin shield scale structure on the surface of aluminum alloy and examine the underwater drag reduction properties of the shark skin shield scale structure prepared by a composite processing method, providing a new idea for constructing a bionic surface. The experimental method was to construct the bionic shield scale structure in two steps with a composite processing method of laser and EDM wire cutting. In the first step, the surface of the substrate was contacted with the molybdenum wire of the wire-cutting machine at an angle of 45°. The cutting path was mimicked to the outline of the shield scales, the spacing of each shield scale was set to 0.65 mm, and the height of each shield scale was set to 0.4 mm. Following the first cutting, the workpiece was rotated by 90° and cut continuously in the same way. The primary structure of the shield scale of the bionic shark skin was completed. In the second step, a nanosecond laser marker was used to etch the microgroove morphology on the surface of the primary structure by setting the laser scanning path spacing to 0.08 mm, the laser power to 12 W, and the scanning speed to 100 mm/s. After the completion of the laser processing, the bionic shark skin shield scale array structure was prepared. The drag reduction test was partly based on the flow-slip theory, and the structural simulation of the array was calculated in COMSOL, comparing the smooth surface, the surface of the primary shield scale array structure, and the surface of the secondary array structure of the bionic shield scales, and observing the wall shear stress, the surface viscous force, and the velocity streamlines, respectively. The test results show that the wall shear stress is minimized when the inclination angle of the shield scale is 13°, the spacing of the grooves on the shield scale surface is 0.17 mm, and the depth of the grooves is 0.08 mm. The surface of the primary shield scale structure and the surface of the secondary bionic shield scale structure both show certain drag reduction properties in the velocity streamline diagram, and the difference between them is that the streamline of the latter is more stable. In the drag reduction test, the parameters of the prepared test piece are 16° shield scale inclination angle, 0.17 mm shield scale groove spacing, and 0.08 mm groove depth, and the drag reduction rate can reach about 35%. It is concluded that the surface of the bionic shark skin shield scale array structure prepared by the composite processing method of laser and wire cutting has excellent underwater drag reduction properties. The machining of the appropriate inclination angle of the shield scales, the spacing of the grooves, and the appropriate depth of the grooves can effectively improve the drag reduction properties of the bionic surface. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|