廖万达,李如鹏,李卓颐,白常宁,张兴凯.镍磷表面无置换接触镀金复合镀层的耐蚀耐磨性能研究[J].表面技术,2025,54(4):122-129.
LIAO Wanda,LI Rupeng,LI Zhuoyi,BAI Changning,ZHANG Xingkai.Anti-corrosion and Tribological Performance of Nickel-phosphorus Coating by Galvanic Replacement-free Electroless Deposited Gold Layer[J].Surface Technology,2025,54(4):122-129
镍磷表面无置换接触镀金复合镀层的耐蚀耐磨性能研究
Anti-corrosion and Tribological Performance of Nickel-phosphorus Coating by Galvanic Replacement-free Electroless Deposited Gold Layer
投稿时间:2024-03-20  修订日期:2024-11-10
DOI:10.16490/j.cnki.issn.1001-3660.2025.04.009
中文关键词:  液相沉积  镍磷镀层  金镀层  腐蚀  摩擦
英文关键词:liquid phase deposition  nickel-phosphorus coating  gold layer  corrosion  friction
基金项目:甘肃省科技专员专项(24CXGA008);兰州市城关区科技计划项目(2024RCCX0004)
作者单位
廖万达 中国科学院兰州化学物理研究所,兰州 730000 
李如鹏 中国科学院兰州化学物理研究所,兰州 730000 
李卓颐 中国科学院兰州化学物理研究所,兰州 730000 
白常宁 中国科学院兰州化学物理研究所,兰州 730000 
张兴凯 中国科学院兰州化学物理研究所,兰州 730000 
AuthorInstitution
LIAO Wanda Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
LI Rupeng Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
LI Zhuoyi Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
BAI Changning Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
ZHANG Xingkai Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 镍磷/金复合镀层具有优异的耐蚀性和润滑性,但是在镍磷基底表面沉积金镀层时,通常会由于置换反应的发生而产生结合力差和孔隙率高等缺陷,从而影响复合镀层的耐蚀性等。通过抑制金离子与镍磷镀层之间的置换反应,避免镍磷镀层表面沉积的金镀层产生孔隙等缺陷,提高镍磷镀层的耐蚀耐磨性能。方法 采用纯铝作为牺牲阳极,避免镍磷镀层基底受到碱性镀金液的腐蚀;同时,碱性镀金液中亚硫酸钠的强络合能力也抑制了金离子与镍磷镀层之间的置换反应;纯铝作为牺牲阳极能够与镍磷镀层形成原电池,为金离子在镍磷镀层表面的还原沉积提供电子;使用接触镀方法在镍磷镀层表面制备了厚度约为250 nm的致密金镀层。运用扫描电子显微镜、能谱仪、X射线光电子能谱仪和X射线衍射仪等分析了镍磷镀层及其表面金镀层的形貌、组成和结构等。使用电化学工作站和往复球盘式摩擦试验机对比研究了镍磷镀层和镍磷/金镀层的耐腐蚀性能和摩擦学性能。结果 无置换接触镀方法能够在镍磷基底表面获得完整致密的金镀层,金镀层主要由形状不规则、尺寸大小不等(100~200 nm)的颗粒密集堆积组成,金镀层下面的镍磷镀层未受明显腐蚀。镍磷镀层呈非晶结构,金镀层具有fcc-Au晶体结构。镍磷/金镀层表现出优异的耐腐蚀性能和摩擦学性能,归因于金镀层的致密结构和化学稳定性以及易剪切性。结论 提出了一种在镍磷镀层表面沉积金镀层的无置换接触镀方法,电化学和摩擦学测试表明所制备的金镀层能够显著提高镍磷镀层的耐腐蚀性和耐磨性。
英文摘要:
      The gold layer possesses excellent corrosion resistance and lubricating properties. However, when a gold layer on a metal substrate, galvanic replacement reactions often lead to interfacial and intrinsic defects, compromising the corrosion resistance and other properties of the coating. By inhibiting the replacement reaction between the gold ions and the nickel-phosphorus (Ni-P) coating, the formation of defects such as pores in the gold layer can be avoided, thereby enhancing the corrosion and wear resistance of the Ni-P coating. Using aluminum as the sacrificial anode in contact with the Ni-P coating can avoid the corrosion of the Ni-P coating substrate by alkaline gold plating solution. Meanwhile, the strong chelating ability of sodium sulfite in alkaline gold plating solution can also limit the replacement reaction between the gold ions and the Ni-P coating. At the same time, the aluminum can form primary battery with Ni-P coating, providing electrons for the reduction and deposition of gold ions on the surface of Ni-P coating in the solution. A dense gold layer with a thickness of 250 nanometers was prepared on the surface of Ni-P coating by the contact plating method. The surface morphology, composition, and structure of the gold layer on the Ni-P coating were analyzed with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The μ Autolab III electrochemical workstation and reciprocating friction testing machine were used to study the corrosion resistance and tribological performance of the Ni-P coating and the Ni-P/gold coating. After deposition of the gold layer, the typical nodular surface morphology of the Ni-P coating significantly changed. The gold layer was mainly composed of densely packed particles with irregular shapes and varying sizes (between 100 and 200 nanometers), and the Ni-P coating below the gold layer was not corroded. Among them, the Ni-P coating exhibited amorphous structure, while the gold layer had a fcc-Au crystal structure. The Ni-P/gold coating exhibited excellent corrosion resistance and tribological performance, which could be attributed to the dense structure and chemical stability of the gold layer, as well as high ductility and low hardness. Compared to the corrosion potential (Ecorr) of −0.486 V and corrosion current density (Jcorr) of 666.84 nA/cm2 for the aluminum substrate, the Ecorr for the Ni-P coating increased to −0.152 V, while Jcorr decreased to 426.71 nA/cm2. The performance of the gold layer was particularly notable, with its Ecorr increasing to 0.125 V and Jcorr dropping to 225.32 nA/cm2. The gold layer exhibited a significant advantage in terms of tribological performance, reducing the friction coefficient of the Ni-P coating from 0.64 to 0.17 and also improving the wear resistance. The presented wear track images of the Ni-P coating with and without the gold layer indicated that the wear of gold layer was relatively light with a wear track width of only 140 μm. In contrast, the wear of the Ni-P coating was more severe with a wear track width of 375 μm. A galvanic replacement-free contact plating method is proposed for depositing the gold layer on the surface of Ni-P coating. Electrochemical and tribological tests show that the prepared gold layer can significantly improve the corrosion resistance and tribological performance of the Ni-P coating.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29780551位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号