张永良,张科杰,危胜,兰海明,李宏盼,李羿含,黄仁忠.基于Ni、Ti中间层的316L不锈钢冷喷涂银涂层结合性能提升研究[J].表面技术,2025,54(3):230-239.
ZHANG Yongliang,ZHANG Kejie,WEI Sheng,LAN Haiming,LI Hongpan,LI Yihan,HUANG Renzhong.Improvement Study of Bonding Performance of Cold-Sprayed Silver Coatings on 316L Stainless Steel Based on Ni and Ti Interlayers[J].Surface Technology,2025,54(3):230-239
基于Ni、Ti中间层的316L不锈钢冷喷涂银涂层结合性能提升研究
Improvement Study of Bonding Performance of Cold-Sprayed Silver Coatings on 316L Stainless Steel Based on Ni and Ti Interlayers
投稿时间:2024-07-26  修订日期:2024-09-20
DOI:10.16490/j.cnki.issn.1001-3660.2025.03.021
中文关键词:  多晶硅还原炉  冷喷涂  过渡层  银涂层  结合强度
英文关键词:polysilicon reduction furnace  cold spray  transition coating  silver coating  bonding strength
基金项目:2023年度襄阳市级科技计划项目关键核心技术攻关专项(序号8)
作者单位
张永良 青海黄河上游水电开发有限责任公司新能源分公司,西宁 810008 
张科杰 湖北超卓航空科技股份有限公司广州研究院,广州 510650 
危胜 青海黄河上游水电开发有限责任公司新能源分公司,西宁 810008 
兰海明 湖北超卓航空科技股份有限公司广州研究院,广州 510650 
李宏盼 青海黄河上游水电开发有限责任公司新能源分公司,西宁 810008 
李羿含 湖北超卓航空科技股份有限公司广州研究院,广州 510650 
黄仁忠 湖北超卓航空科技股份有限公司广州研究院,广州 510650 
AuthorInstitution
ZHANG Yongliang New Energy Branch, Qinghai Huanghe Hydropower Development Co., Ltd., Xining 810008, China 
ZHANG Kejie Guangzhou Research Center, Hubei Chaozhuo Aviation Technology Co., Ltd., Guangzhou 510650, China 
WEI Sheng New Energy Branch, Qinghai Huanghe Hydropower Development Co., Ltd., Xining 810008, China 
LAN Haiming Guangzhou Research Center, Hubei Chaozhuo Aviation Technology Co., Ltd., Guangzhou 510650, China 
LI Hongpan New Energy Branch, Qinghai Huanghe Hydropower Development Co., Ltd., Xining 810008, China 
LI Yihan Guangzhou Research Center, Hubei Chaozhuo Aviation Technology Co., Ltd., Guangzhou 510650, China 
HUANG Renzhong Guangzhou Research Center, Hubei Chaozhuo Aviation Technology Co., Ltd., Guangzhou 510650, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高多晶硅还原炉内壁316L不锈钢上冷喷涂银涂层的结合强度,并研究其机理。方法 采用钛过渡层的新方案,采用金相显微镜、显微硬度计、SEM、万能拉伸试验机、白光干涉仪等测试手段对比过渡层材料、粉末形貌对涂层显微结构、硬度、界面特性、表面形貌和结合强度的影响,分析阐明分别采用镍和钛过渡层的条件下,银涂层结合强度存在差异的主要原因。结果 直接在316L上冷喷涂银涂层,无法实现有效沉积,而采用镍和钛作为过渡层均能制备致密的银涂层,但是镍过渡层与银涂层的结合强度仅有(32.1±4.1) MPa,而采用不规则形貌的钛粉末作为过渡层原材料,能够将结合强度显著提高至(61.5±5.8) MPa。主要原因为不规则钛粉作为过渡层的表面微结构更多,峰峭度更高,接触表面积更大,比面积达到2.25,有利于涂层发生更强的机械咬合,从而获得较高的结合强度。结论 可为制备高结合强度、长寿命的多晶硅还原炉银涂层提供新的解决方案。
英文摘要:
      The application of cold spray technology to deposit silver coatings on the inner walls of polycrystalline silicon reduction furnaces offers significant advantages in terms of energy conservation and prevention of impurity elements contamination. However, directly fabricating high-bond-strength silver coatings on 316L stainless steel substrates remains a challenge. Based on previous studies, even with a nickel interlayer, the bonding strength and service life of coatings are limited. The work aims to propose a novel approach of utilizing a titanium interlayer to enhance the adhesion performance of silver coatings on 316L substrates. A comprehensive suite of characterization techniques, including optical microscopy (OM), microhardness testing, scanning electron microscopy (SEM), universal tensile testing, and white light interferometry was used to systematically investigate the effect of interlayer material (Ni and Ti) and powder morphology (irregular and spherical) on the microstructure, hardness, interfacial characteristics, surface morphology, and bonding strength of coatings. This comparative analysis elucidated the underlying mechanisms responsible for the differences in coating adhesion strength observed with different interlayer materials. The results demonstrated that direct cold spray deposition of silver coating on 316L substrate failed to achieve effective deposition, while all three interlayer materials — gas-atomized spherical nickel powder (Ni), gas-atomized spherical titanium powder (Ti(s)), and irregular titanium powder (Ti(I)) prepared via the hydride-dehydride method — produced relatively dense coatings with porosity less than 0.5%. The silver coatings deposited on these interlayers also exhibited similar density and microhardness values. However, significant variations were observed in the bonding strength of the coating systems. The 316L/Ni interface exhibited the highest bonding strength (71.3±4.6) MPa, surpassing that of 316L/Ti(S) (63.2±2.9) MPa and 316L/Ti(I) (58.4±4.8) MPa. Conversely, the adhesion strength between the silver coating and the interlayer displayed an opposite trend, namely (32.1±4.1) MPa (Ni/Ag)<(42.3±3.6) MPa (Ti(s)/Ag)<(61.5±5.8) MPa (Ti(I)/Ag). These results indicate that, under the proposed conditions, employing Ti(I) as the interlayer yielded the optimal bonding strength of the coating system. To elucidate the underlying mechanism, the deposition velocity/critical velocity ratio for each interlayer powder was calculated with both CFD simulation and empirical formula methods. The Ni powder exhibited the highest ratio (1.64), followed by Ti(I) (1.56) and Ti(s) (1.27), indicating that Ni particles were more likely to achieve favorable bonding conditions with the 316L substrate, resulting in higher interfacial strength. However, SEM analysis of the coating surface morphology and quantitative surface profile measurements revealed that the Ti(S) interlayer possessed a finer surface microstructure and sharper peak profiles compared to the Ni interlayer. This finer microstructure facilitated a better synergistic deformation at the interface during silver powder deposition, especially for the relatively large microhardness differences combinations. Moreover, the ratio of actual surface area to projected area for the three interlayers (Ni 1.97, Ti(S) 2.07, Ti(I) 2.25) indicated a progressive increase in actual contact area with the silver coating, contributing to higher nominal bonding strength, highlighting that, in addition to surface roughness, the surface microstructure morphology and actual contact area also played crucial roles in determining the bonding strength of soft coatings deposited on hard substrates. In conclusion, this study offers a new solution for preparing high-bonding-strength, long-lifespan silver coatings in polycrystalline silicon reduction furnaces.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29780260位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号