刘叶诚,郑志斌,龙骏,徐志彪,郑开宏,焦四海,殷福星.海洋环境用热轧304L不锈钢-A36碳钢复合钢板的腐蚀行为研究[J].表面技术,2024,53(14):75-86.
LIU Yecheng,ZHENG Zhibin,LONG Jun,XU Zhibiao,ZHENG Kaihong,JIAO Sihai,YIN Fuxing.#$NPCorrosion Behaviour of Hot-rolled 304L Stainless Steel-A36 Carbon Steel Composite Steel Plate for Marine Environment[J].Surface Technology,2024,53(14):75-86
海洋环境用热轧304L不锈钢-A36碳钢复合钢板的腐蚀行为研究
#$NPCorrosion Behaviour of Hot-rolled 304L Stainless Steel-A36 Carbon Steel Composite Steel Plate for Marine Environment
投稿时间:2023-08-20  修订日期:2023-09-19
DOI:10.16490/j.cnki.issn.1001-3660.2024.14.006
中文关键词:  金属复合材料  不锈钢  碳钢  腐蚀  海洋环境
英文关键词:metal composites  stainless steel  carbon steel  corrosion  marine environment
基金项目:国家重点研发计划(2021YFB3701704):广东省科学院专项资金项目(2022GDASZH-2022010103,2021GDASYL-20210102002);第八届中国科协青年人才托举工程(2022QNRC001);广州市青年科技人才托举项目(QT20220101075)
作者单位
刘叶诚 五邑大学 轨道交通学院,广东 江门 529000;广东省科学院新材料研究所 国家钛及稀有金属粉末冶金工程技术研究中心 广东省金属强韧化技术与应用重点实验室,广州 510650 
郑志斌 广东省科学院新材料研究所 国家钛及稀有金属粉末冶金工程技术研究中心 广东省金属强韧化技术与应用重点实验室,广州 510650 
龙骏 广东省科学院新材料研究所 国家钛及稀有金属粉末冶金工程技术研究中心 广东省金属强韧化技术与应用重点实验室,广州 510650;广东省钢铁基复合材料工程研究中心,广州 510650 
徐志彪 五邑大学 轨道交通学院,广东 江门 529000 
郑开宏 广东省科学院新材料研究所 国家钛及稀有金属粉末冶金工程技术研究中心 广东省金属强韧化技术与应用重点实验室,广州 510650;广东省钢铁基复合材料工程研究中心,广州 510650 
焦四海 宝山钢铁股份有限公司,上海 201900 
殷福星 广东省科学院新材料研究所 国家钛及稀有金属粉末冶金工程技术研究中心 广东省金属强韧化技术与应用重点实验室,广州 510650;广东省钢铁基复合材料工程研究中心,广州 510650 
AuthorInstitution
LIU Yecheng School of Rail Traffic, Wuyi University, Guangdong Jiangmen 529000, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China 
ZHENG Zhibin Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China 
LONG Jun Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Iron Matrix Composite Engineering Research Center, Guangzhou 510650, China 
XU Zhibiao School of Rail Traffic, Wuyi University, Guangdong Jiangmen 529000, China 
ZHENG Kaihong Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Iron Matrix Composite Engineering Research Center, Guangzhou 510650, China 
JIAO Sihai Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China 
YIN Fuxing Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Iron Matrix Composite Engineering Research Center, Guangzhou 510650, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究304L不锈钢和A36碳钢热轧复合钢板中不锈钢覆层、碳钢基体以及不锈钢-碳钢复合界面在海洋大气环境及海水浸没环境中的腐蚀行为与腐蚀机理。方法 采用中性盐雾实验和电化学实验模拟了海洋大气环境及海水浸没环境,对304L不锈钢-A36碳钢热轧复合钢板的腐蚀机理进行了全面评估。利用扫描电子显微镜(SEM)和能量色散光谱(EDS)表征复合材料界面的微观结构和局部元素分布,使用X射线衍射仪(XRD)表征了腐蚀产物的成分和化合价。结果 在复合界面上存在一个明显的元素过渡区域。2种钢复合界面结合平滑,结合质量良好,轧制对2种钢复合界面处的组织无明显影响。当中性盐雾实验进行到96 h时,复合界面的腐蚀速率开始超越碳钢基体的腐蚀速率。实验结束时,复合界面与碳钢基体的腐蚀失重量分别达到582 g/m2和468 g/m2,复合界面在海洋大气环境中的腐蚀速率为碳钢基体的1.24倍。此外,在复合界面碳钢侧的腐蚀产物中观察到富氯层。在电化学实验中,复合界面显示出了比碳钢基体更小的阻抗,这使复合界面在海水浸没环境中的腐蚀速率为碳钢基体的1.13倍。在复合界面处发现电偶腐蚀效应,加速了A36碳钢侧的腐蚀。开路电位的测试结果表明,复合界面的开路电位与耐蚀性较差的碳钢的开路电位接近,不同不锈钢-碳钢面积比复合界面的开路电位变化较小。结论 在不同海洋腐蚀环境中,复合界面的腐蚀速率均大于覆层及基体的腐蚀速率,在海洋大气环境中尤为严重,复合界面碳钢部分的小面积暴露将导致材料的耐腐蚀性严重下降,在实际工程使用中应避免复合界面,尤其是复合界面碳钢部分的直接暴露。
英文摘要:
      Corrosion is one of the main causes of material failure. Steel components used for marine construction, such as steel supports for coastal airports, steel structures for sea-spanning bridges, offshore platforms and steel plates for island buildings, etc., cause a large amount of economic losses due to corrosion every year. The work aims to investigate the corrosion behavior and corrosion mechanism of cladding, carbon steel substrate and stainless steel-carbon steel composite interface in 304L stainless steel and A36 carbon steel hot-rolled composite steel plate in marine atmospheric environment and seawater immersion environment. Neutral salt spray test and electrochemical test were used to simulate the different marine environments. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the microstructure and local elemental distribution at the composite interface, and X-ray diffractometry (XRD) was used to characterize the composition and valence of the corrosion products. A clear elemental transition region existed at the composite interface. The combination of the two steel composite interfaces was smooth and the bonding quality was good, and rolling had no significant effect on the microstructure at the composite interfaces of the two steels. When the neutral salt spray test was carried out for 96 h, the corrosion rate of the composite interface began to exceed that of the carbon steel substrate. At the end of the test, the corrosion mass loss of the composite interface and carbon steel substrate reached 582 g/m2 and 468 g/m2, respectively, and the corrosion rate of the composite interface in the marine atmosphere was 1.24 times of that of the carbon steel substrate. In addition, a chlorine-rich layer was observed in the corrosion products on the carbon steel side of the composite interface. In electrochemical tests, the composite interface showed smaller impedance than the carbon steel substrate, which resulted in a corrosion rate of 1.13 times that of the carbon steel substrate for the composite interface in seawater immersion environment. The galvanic coupling corrosion effect was found at the composite interface, which accelerated the corrosion of A36 carbon steel. The test results of the OCP showed that carbon steel played a dominant role in the OCP of the exposed surface of the composite steel, and the OCP of the composite interface with different stainless steel-carbon steel area ratios varied less. From the SEM morphology and EDS results of the cladding and composite interface after electrochemical tests, two forms of pitting on the cladding surface could be observed, including a wide range of pitting lace cover structure and smaller individual pitting. The stainless steel at the composite interface, on the other hand, did not produce any significant pitting craters, indicating that the 304L stainless steel portion of the composite interface was protected during tests. In different marine environments, the corrosion rate of composite interface is greater than that of cladding and substrate, particularly serious in the marine atmospheric environment. Small exposure of the carbon steel part of the composite interface can lead to a serious reduction in the corrosion resistance of the material, so the composite interface should be avoided in actual engineering application.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第29779628位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号