王瑞涵,花银群,叶云霞,蔡杰,戴峰泽.激光冲击金属黏结层高温热循环应力演化规律的有限元模拟[J].表面技术,2024,53(1):123-134.
WANG Ruihan,HUA Yinqun,YE Yunxia,CAI Jie,DAI Fengze.Finite Element Simulation of the Stress Evolution of the Laser Shock Peening Metallic Bond Coat in High Temperature Thermal Cycles[J].Surface Technology,2024,53(1):123-134
激光冲击金属黏结层高温热循环应力演化规律的有限元模拟
Finite Element Simulation of the Stress Evolution of the Laser Shock Peening Metallic Bond Coat in High Temperature Thermal Cycles
投稿时间:2022-11-24  修订日期:2023-03-22
DOI:10.16490/j.cnki.issn.1001-3660.2024.01.012
中文关键词:  激光冲击  热循环  热生长氧化物  黏结层  应力分布  有限元仿真
英文关键词:laser shock peening  thermal cycle  thermally grown oxide  bond coat  stress distribution  finite element simulation
基金项目:国家自然科学基金(U1933124);江苏省重点研发产业前瞻项目(BE2020037);镇江市重点研发计划(GY2019005)
作者单位
王瑞涵 江苏大学 机械工程学院 微纳光电子与太赫兹技术研究院 先进制造与现代装备技术工程研究院,江苏 镇江 212013 
花银群 江苏大学 机械工程学院 微纳光电子与太赫兹技术研究院 先进制造与现代装备技术工程研究院,江苏 镇江 212013 
叶云霞 江苏大学 机械工程学院 微纳光电子与太赫兹技术研究院 先进制造与现代装备技术工程研究院,江苏 镇江 212013 
蔡杰 江苏大学 机械工程学院 微纳光电子与太赫兹技术研究院 先进制造与现代装备技术工程研究院,江苏 镇江 212013 
戴峰泽 江苏大学 机械工程学院 微纳光电子与太赫兹技术研究院 先进制造与现代装备技术工程研究院,江苏 镇江 212013 
AuthorInstitution
WANG Ruihan School of Mechanical Engineering,Institute of Micro-Nano Optoelectronic and Terahertz Technology,Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Jiangsu Zhenjiang 212013, China 
HUA Yinqun School of Mechanical Engineering,Institute of Micro-Nano Optoelectronic and Terahertz Technology,Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Jiangsu Zhenjiang 212013, China 
YE Yunxia School of Mechanical Engineering,Institute of Micro-Nano Optoelectronic and Terahertz Technology,Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Jiangsu Zhenjiang 212013, China 
CAI Jie School of Mechanical Engineering,Institute of Micro-Nano Optoelectronic and Terahertz Technology,Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Jiangsu Zhenjiang 212013, China 
DAI Fengze School of Mechanical Engineering,Institute of Micro-Nano Optoelectronic and Terahertz Technology,Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Jiangsu Zhenjiang 212013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探索激光冲击(LSP)对高温热循环(反复升温、保温和降温)过程中热障涂层中的热生长氧化物(TGO)表面及TGO/黏结层(BC)界面应力分布的影响规律。方法 基于真实TGO形貌,建立有限元模型,从应力演化角度分析LSP改性(LSPed)与未改性(Non-LSPed)试样危险区域的失效形式;使用拉曼光谱法(RFS)对氧化后的金属黏结层进行残余应力测试。结果 TGO应力分布随着形貌的起伏呈现相应的起伏变化。TGO表面压应力最大值出现在波峰位置,经10次热循环后LSPed试样TGO表面S11(平行于涂层表面的正应力)压应力最大值大于Non-LSPed试样,经50次热循环后LSPed试样TGO表面压应力最大值远小于Non-LSPed试样;随着热循环次数的增加,2类试样TGO/BC界面S11应力的差别变小。LSPed试样TGO表面S22(垂直于涂层表面的应力)应力随着热循环次数的增加逐渐增大,但S22拉应力小于250 MPa,应力总体偏低。TGO/BC界面S22、S12(平行于涂层表面的剪切应力)应力随循环次数的变化规律基本一致,经10次热循环后,LSPed试样的S22、S12应力均大于Non-LSPed试样;经50次热循环后,2类试样界面的S22、S12应力相差不大。结论 文中构建的TGO应力有限元仿真模型,模拟结果与测试结果吻合。LSP通过调控TGO生长速度,可以有效缓解TGO生长过程中应力的剧烈变化,大幅降低TGO表面S11和S12应力最大值,进而降低TGO表面产生垂直于表面贯穿裂纹和剪切破坏的风险,LSP对TGO表面(TGO/BC界面)应力状态的影响较小。
英文摘要:
      The work aims to investigate the effect of laser shock peening (LSP) on the stress distribution of thermally grown oxide (TGO) surface and TGO/BC interface during high temperature thermal cycles. Based on the real TGO morphology, the experimentally obtained TGO thicknesses for different times during thermal cycles were fitted, the material transformation method was used to simulate the thickening process of TGO during thermal cycles, a finite element model was established, and two forms of failure in the hazardous area of LSP-modified (LSPed) and non-LSP-modified (Non-LSPed) specimens were analyzed from the perspective of stress evolution. Then, the residual stress test of the oxidized metal bond coats was performed by Raman spectroscopy (RFS). The overall compressive stress on the surface of the TGO increased with the number of thermal cycles and the stress distribution of the TGO exhibited corresponding fluctuations with the topography. The maximum compressive stress on the upper surface of the TGO occurred at the peak, the compressive stress decreased and gradually changed to a tensile stress from the peak to the valley. After 10 thermal cycles, the maximum value of S11 compressive stress on the TGO surface of the LSPed specimen was greater than that of the Non-LSPed specimen, and after 50 thermal cycles, the maximum value of TGO compressive stress on the TGO surface of the LSPed specimen was much smaller than that of the Non-LSPed specimen. As the number of thermal cycles increased, the difference between the S11 stress values at the TGO/BC interface of the two types of specimens became smaller. The maximum values of S22 tensile stress on the TGO surface and at the TGO/BC interface were concentrated in the peak region, and the maximum values of S12 shear stress were located in the peak-waist region midway between the peak and the valley of the wave. The S22 stress on the surface of the TGO of the LSPed specimen increased gradually with the number of thermal cycles, but the S22 tensile stress value was less than 250 MPa and the stress value was generally low. The pattern of changes in S22 and S12 stresses at the TGO/BC interface with the number of cycles was basically the same:after 10 thermal cycles, the S22 and S12 stresses in the LSPed specimens were greater than those in the Non-LSPed specimens; and after 50 thermal cycles, there was little difference in the S22 and S12 stresses at the interface between the two types of specimens. The simulation results obtained from the TGO stress finite element simulation model constructed are consistent with the test results. By regulating the growth rate of TGO, LSP can effectively alleviate the drastic change of stress during the TGO growth process, greatly reduce the maximum S11 and S12 stress on the surface of TGO, and then reduce the occurrence of penetrating cracks perpendicular to the surface and shear failure on the surface of TGO and has little effect on the stress state of the surface of TGO (TGO/BC interface).
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20628069位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号