金卫凤,李鑫,李健,张家宇,郑浩.实验参数对力曲线中Cassie-Wenzel状态转换信息的影响[J].表面技术,2023,52(12):169-177.
JIN Wei-feng,LI Xin,LI Jian,ZHANG Jia-yu,ZHENG Hao.Effect of Experimental Parameters on Cassie-Wenzel State Transition Information in Force Response Curve[J].Surface Technology,2023,52(12):169-177
实验参数对力曲线中Cassie-Wenzel状态转换信息的影响
Effect of Experimental Parameters on Cassie-Wenzel State Transition Information in Force Response Curve
投稿时间:2023-09-30  修订日期:2023-11-27
DOI:10.16490/j.cnki.issn.1001-3660.2023.12.015
中文关键词:  超疏水表面  状态转换  Cassie状态  Wenzel状态  力曲线法  实验参数
英文关键词:superhydrophobic surface  state transition  Cassie state  Wenzel State  force response curve method  experimental parameters
基金项目:国家自然科学基金(51775248);江苏大学2023年大学生创新训练计划(202310299905X)
作者单位
金卫凤 江苏大学 机械工程学院 江苏 镇江 212013 
李鑫 江苏大学 机械工程学院 江苏 镇江 212013 
李健 江苏大学 材料科学与工程学院,江苏 镇江 212013 
张家宇 江苏大学 机械工程学院 江苏 镇江 212013 
郑浩 江苏大学 机械工程学院 江苏 镇江 212013 
AuthorInstitution
JIN Wei-feng School of Mechanical Engineering,Jiangsu Zhenjiang 212013, China 
LI Xin School of Mechanical Engineering,Jiangsu Zhenjiang 212013, China 
LI Jian School of Materials Science and Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China 
ZHANG Jia-yu School of Mechanical Engineering,Jiangsu Zhenjiang 212013, China 
ZHENG Hao School of Mechanical Engineering,Jiangsu Zhenjiang 212013, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探明合适的实验参数范围,以获取稳定的润湿状态转换信息,考察实验系统误差、实验过程参数、表面润湿性能和润湿状态转换条件等对力曲线上润湿状态转换信息的影响规律。方法 根据力曲线法的理论,计算出采用不同实验参数时获取的含有润湿状态转换信息的力曲线,并采用文献的实验结果验证理论计算分析出的实验参数影响规律。结果 采用体积为0.1 mL的液滴进行挤压液滴实验时,1 µm的距离误差和0.8 mN的作用力误差即可保证力曲线上润湿状态转换信息较为明显。对于一般精度的测试系统,能保证较为明显的润湿状态转换信息的液滴体积为0.050 mL以上,加载步长的优选值区间为10~25 µm,精度较高的系统可应用体积为0.010 mL的液滴。加载表面的润湿性能对力曲线上的润湿状态转换信息影响较小,待测表面在Cassie状态的润湿性能影响也较小,但待测表面在Wenzel状态的接触角大可能使代表润湿状态转换信息的凸起宽度减小。借助于润湿状态转换过程中液滴充填进超疏水表面微结构内导致的作用力下降信息,可增强力曲线上的润湿状态转换信息。结论 通过选用较小的距离误差和作用力误差,采用大体积液滴和可变加载步长,可以增强力曲线上的润湿状态转换信息,液滴充填微结构引起的力曲线上大幅度的凹陷也可以作为润湿状态转换的标志。
英文摘要:
      Cassie-Wenzel wetting state transition is a typical phenomenon in the failure of superhydrophobic surfaces and has attracted much more attention recently. The force response curve method, which is carried out by squeezing a liquid droplet on the tested superhydrophobic surfaces, is a typical method to characterize the Cassie-Wenzel wetting state transition. In this force response curve method, extracting the wetting state transition information from the force response curve is critical, which requires choosing suitable value of experimental parameters. In order to find out the suitable experimental parameter range for obtaining stable transition information of wetting state, the work aims to investigate the effect of experimental system error, experimental process parameters, surface wettability and wettability transition conditions on the wettability transition information in the force response curve. According to the theory of the force response curve method, a series of force response curves with the Cassie-Wenzel wetting state transition information were calculated for the squeezing droplet processes with different experimental parameters. The calculated results were verified by comparison with the force response curve from the former experiments. When the volume of droplet was 0.1 mL in the squeezing droplet experiment, a distance error of 1 μm and a force error of 0.8 mN could ensure the obvious wetting state transition information in the force response curve. More errors in both the distance and the force would make a considerable fluctuation on the force response curve, which might cover up the wetting state transition information. In the general situation of testing systems with a less precision, a droplet with volume above 0.050 mL could be used in the experiments to obtain the wetting state transition information. A volume above 0.010 mL could be used in experiments on testing system with a higher precision. The optimum value range of loading step was 10~25 μm, which could guarantee a reasonable wetting state transition information over the fluctuation on the force response curve. The above calculated results were verified by comparison between the former experiments from two different groups. Moreover, it was observed that both the wettability of the loading surface and the wettability of the surface to be measured in Cassie state had few effect on the wetting state transition information on the force curve. However, increasing the contact angle of the surface to be measured in Wenzel state might decrease the width of the bulge that represented the wetting state transition information. The wetting state transition information on the force response curve can be enhanced by using a smaller distance error and a force error, a large droplet size and a variable loading step length. Another wetting state transition information, a much more deflection on the force response curve induced by the droplet filling into the microstructure of the tested superhydrophobic surface during the wetting state transition process, can be used in the squeezing droplet experiment. By optimizing the experimental parameters based on the guidance in this work, the mechanism of the Cassie-Wenzel wetting state transition may be further reliably explored.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20743498位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号