王羽中,史耀耀,张国飞,贺云鹏.B和Si掺杂对CrAlN涂层结构和切削钛合金寿命的影响[J].表面技术,2023,52(10):360-366, 393.
WANG Yu-zhong,SHI Yao-yao,ZHANG Guo-fei,HE Yun-peng.Effects of B and Si Doping on CrAlN Coating Structure and Tool Life of Cutting Titanium Alloy[J].Surface Technology,2023,52(10):360-366, 393
B和Si掺杂对CrAlN涂层结构和切削钛合金寿命的影响
Effects of B and Si Doping on CrAlN Coating Structure and Tool Life of Cutting Titanium Alloy
投稿时间:2022-11-29  修订日期:2023-02-24
DOI:10.16490/j.cnki.issn.1001-3660.2023.10.031
中文关键词:  Cr1–xAlxN涂层  多元掺杂  热稳定性  抗氧化性  切削性能
英文关键词:Cr1–xAlxN coating  multi-doping  thermal stability  oxidation resistance  cutting performance
基金项目:国家科技重大专项(2017-Ⅶ-0002-0095)
作者单位
王羽中 西北工业大学 机电学院,西安 710072;株洲钻石切削刀具股份有限公司研发中心,湖南 株洲 412007 
史耀耀 西北工业大学 机电学院,西安 710072 
张国飞 株洲钻石切削刀具股份有限公司研发中心,湖南 株洲 412007 
贺云鹏 株洲钻石切削刀具股份有限公司研发中心,湖南 株洲 412007 
AuthorInstitution
WANG Yu-zhong School of Mechanical and Electrical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Hunan Zhuzhou 412007, China 
SHI Yao-yao School of Mechanical and Electrical Engineering, Northwestern Polytechnical University, Xi'an 710072, China 
ZHANG Guo-fei Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Hunan Zhuzhou 412007, China 
HE Yun-peng Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Hunan Zhuzhou 412007, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 CrAlN涂层以其优异的抗氧化性能被广泛应用于切削刀具涂层领域,针对CrAlN涂层热稳定性较低,在超过900 ℃后会发生热分解,导致其力学性能显著下降的问题,通过B、Si共掺杂方法改善CrAlN涂层的性能。方法 采用阴极弧蒸发方法制备Cr0.42Al0.58N、Cr0.35Al0.59B0.06N、Cr0.37Al0.54Si0.09N涂层,借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)、纳米压痕仪,通过划痕和切削实验研究B和Si掺杂对CrAlN涂层晶体结构、硬度、结合力、热性能和切削寿命的影响。结果 Cr0.42Al0.58N和Cr0.35Al0.59B0.06N涂层为单相立方结构,Cr0.37Al0.54Si0.09N涂层为立方和六方的两相结构;Cr0.42Al0.58N、Cr0.35Al0.59B0.06N、Cr0.37Al0.54Si0.09N涂层的硬度分别为(29.8±1.5)、(36.9±1.4)、(33.8±1.6)GPa,与基体的结合力分别为116.2、58.3、58.0 N;通过B和Si掺杂抑制了CrAlN涂层的热分解过程,Cr-N键的断裂起始温度由Cr0.42Al0.58N的1 000 oC提高到Cr0.35Al0.59B0.06N的1 200 ℃和Cr0.37Al0.54Si0.09N的1 100 ℃;在1 100 ℃下氧化15 h后,Cr0.42Al0.58N、Cr0.35Al0.59B0.06N、Cr0.37Al0.54Si0.09N涂层的氧化层厚度分别为2.38、1.80、0.53 μm。结论 通过B和Si掺杂提高了CrAlN涂层的力学性能、热稳定性和抗氧化性,其中CrAlBN涂层呈现出最优异的热稳定性和切削性能,CrAlSiN涂层的抗氧化性最佳。
英文摘要:
      Because CrAlN coating has excellent oxidation resistance components, it is widely used in the field of cutting tool coating. However, the thermal decomposition of CrAlN coating above 900 ℃ leads to a drop in mechanical properties. Therefore, B and Si doping method was adopted in this study to further improve the performance of CrAlN coating. The structure, hardness, cohesion, thermal and machining properties of Cr0.42Al0.58N, Cr0.35Al0.59B0.06N and Cr0.37Al0.54Si0.09N deposited by cathodic arc evaporation were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), nano-indentation, scratch test and cutting experiment. The Cr0.42Al0.58N and Cr0.37Al0.54Si0.09N coatings presented a single phase cubic structure, whereas the Cr0.35Al0.59B0.06N coating was mixed cubic-wurtzite structure. Cr0.42Al0.58N coating presented typical columnar crystal morphology along the growth direction. The addition of B and Si inhibited the growth of columnar crystals. The fracture morphology of Cr0.35Al0.59B0.06N coating and Cr0.37Al0.54Si0.09N coating was composed of fine columnar crystals and nanocrystals respectively. The solid solution strengthening and grain refinement caused by B and Si doping increased the hardness of the coating from (29.8±1.5)GPa of Cr0.42Al0.58N coating to (36.9±1.4)GPa of Cr0.35Al0.59B0.06N coating and (33.8±1.6)GPa of Cr0.37Al0.54Si0.09N coating. However, B and Si doping reduced the cohesion with substrate from 116.2 N of Cr0.42Al0.58N coating to 58.3 N and 58.0 N of Cr0.35Al0.59B0.06N and Cr0.37Al0.54Si0.09N. The grain refinement caused by the addition of B and Si reduced the elastic modulus of the coating. The elastic modulus of Cr0.42Al0.58N, Cr0.35Al0.59B0.06N and Cr0.37Al0.54Si0.09N coatings was 523.6, 484.8 and 431.7 GPa respectively. The addition of B and Si improved the plastic deformation resistance of the coating. The ratios of H3/E2 of Cr0.42Al0.58N, Cr0.35Al0.59B0.06N and Cr0.37Al0.54Si0.09N coatings were 0.097, 0.213 and 0.206 respectively. The addition of B and Si inhibited the fracture of Cr-N bond, thus retarding the thermal decomposition process. The initial fracture temperature of Cr-N bond increased from 1 000 ℃ of Cr0.42Al0.58N to 1 200 ℃ of Cr0.35Al0.59B0.06N and 1 100 ℃ of Cr0.37Al0.54Si0.09N. In addition, the formation temperature of w-AlN increased from 1 000 ℃ of Cr0.42Al0.58N to 1 100 ℃ of Cr0.35Al0.59B0.06N. The doping of B and Si promoted the formation of dense oxides on the surface of the coating during oxidation, thus significantly improving the high-temperature oxidation resistance of the coating. After oxidation at 1 100 ℃ for 15 h, the oxide layer thickness of Cr0.42Al0.58N and Cr0.35Al0.59B0.06N coatings was 2.38 μm and 1.80 μm. Cr0.37Al0.54Si0.09N coating showed the best oxidation resistance, and the thickness of the oxide layer of the coating was only 0.53 μm. A mixed oxide layer consisting of Al2O3, Cr2O3 and SiO2 was grown on the surface of the coating containing Si. The oxide layer could avoid the formation of porous structure, thus maintaining a good combination with the residual nitride layer and providing effective protection for the coating. B and Si doping can improve the cutting performance of CrAlN coating on titanium alloy materials. After 45 min of cutting, the wear amount of Cr0.42Al0.58N, Cr0.35Al0.59B0.06N and Cr0.37Al0.54Si0.09N coated inserts is 0.5 mm, 0.071 mm and 0.173 mm respectively.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20628159位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号