王博,刘洋,栾胜家,彭新,程玉贤.CoNiCrAlY黏结层结构设计及其对热障涂层结合强度和抗热震性能的影响[J].表面技术,2023,52(2):263-271.
WANG Bo,LIU Yang,LUAN Sheng-jia,PENG Xin,CHENG Yu-xian.Microstructure Design of CoNiCrAlY Bonding Coating and Its Influence on the Bonding Strength and Thermal Shock Resistance of Thermal Barrier Coatings[J].Surface Technology,2023,52(2):263-271
CoNiCrAlY黏结层结构设计及其对热障涂层结合强度和抗热震性能的影响
Microstructure Design of CoNiCrAlY Bonding Coating and Its Influence on the Bonding Strength and Thermal Shock Resistance of Thermal Barrier Coatings
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.02.024
中文关键词:  热障涂层  金属黏结层  微观结构  结合强度  热震性能
英文关键词:thermal barrier coating  metal bonding layer  microstructure  bonding strength  thermal shock performance
基金项目:国家科技重大专项(2017-Ⅶ-0007-0100)
作者单位
王博 北京航空航天大学 材料科学与工程学院,北京 100191;中国航发沈阳黎明航空发动机有限责任公司,沈阳 110043 
刘洋 鲁迅美术学院,沈阳 110004 
栾胜家 中国科学院金属研究所,沈阳 110016 
彭新 空装驻沈阳地区第二军事代表室,沈阳 110042 
程玉贤 中国航发沈阳黎明航空发动机有限责任公司,沈阳 110043 
AuthorInstitution
WANG Bo School of Materials Science and Engineering, Beihang University, Beijing 100191, China;AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China 
LIU Yang Luxun Academy of Fine Arts, Shenyang 110004, China 
LUAN Sheng-jia Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 
PENG Xin Shenyang Area 2nd Military Representative Room of Air Force Equipment Department, Shenyang 110042, China 
CHENG Yu-xian AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 设计热障涂层黏结层结构,改善涂层结合强度和抗热震性能。方法 制备了5种结构的CoNiCrAlY黏结层,即超音速火焰喷涂(HVOF)底层+等离子喷涂(APS)上层的双层结构黏结层试样,对其进行1 050 ℃真空热处理3 h后的试样,APS黏结层试样,HVOF黏结层试样及其真空热处理试样。再在以上5种试样表面制备Y2O3部分稳定ZrO2(YSZ)陶瓷层,研究黏结层的表面粗糙度、相组成、微观组织结构及其对涂层试样结合强度、热震性能的影响。结果 制备态的黏结层由g/g¢和β-NiAl两相组成,真空热处理后β相含量增多,表面粗糙度下降。在所有涂层试样中,双黏结层的涂层试样的结合强度最低,为28.43 MPa;对其真空热处理后得到的涂层试样的结合强度最高,达到39.42 MPa,主要原因在于热处理促进了两黏结层之间的扩散,提高了界面强度。双黏结层的涂层试样的抗热震性能最好,200次热震后涂层无明显剥落,而APS黏结层的涂层试样的抗热震性能最差,涂层抗热震性能的差异在于黏结层微观结构的不同。结论 双黏结层的结构设计综合了APS、HVOF两种黏结层制备方法的优点,能显著提高热障涂层的抗热震寿命。
英文摘要:
      Thermal barrier coatings (TBCs) have advantages of decreasing the surface temperature of aero-engine blades, improving oxidation resistance of blades, prolonging blades service lifetimes, and reducing fuel consumption of engines, which have been widely used for decades. A typical TBC system is composed of a metallic bond coat and a ceramic top coat. The former is usually made of MCrAlY (M:Ni, Co or Ni+C) and PtAl, and the latter is made of Y2O3 partially stabilized ZrO2 (YSZ). Metallic bond coats can be prepared by high velocity oxygen-fuel (HVOF) or atmospheric plasma spraying (APS) methods. APS bond coats have rough surfaces and good adhesion to the ceramic top coat, but their porosities are high and the cohesive force is relatively, while the HVOF ones have dense microstructure, excellent oxidation resistance, good adhesion to the substrate, but the surface roughness is low and the adhesion to the ceramic top coats is not high enough. Before, the preparation of ceramic top coats, the substrates with bond coats need vacuum heat treatment, which could promote to formation a thermally grown oxide (TGO) layer on the bond coat leading to enhanced oxidation resistance and interface bond strength. Usually, it is considered that the abnormal growth of the TGO layer is a key factor causing TBCs failure.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20627572位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号