张鸿滨,赵文硕,郭致远,勾睿杰,李勋.车削和铣削加工表面塑性变形对TC4试件疲劳性能的影响[J].表面技术,2023,52(2):35-42, 66.
ZHANG Hong-bin,ZHAO Wen-shuo,GUO Zhi-yuan,GOU Rui-jie,LI Xun.Effects of Turned and Milled Surface Plastic Deformation on Fatigue Properties of TC4 Specimens[J].Surface Technology,2023,52(2):35-42, 66
车削和铣削加工表面塑性变形对TC4试件疲劳性能的影响
Effects of Turned and Milled Surface Plastic Deformation on Fatigue Properties of TC4 Specimens
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.02.004
中文关键词:  钛合金  表面完整性  塑性变形  金属纤维组织  疲劳寿命  车削  铣削
英文关键词:titanium  surface integrity  plastic deformation  metal fiber structure  fatigue life  turning  milling
基金项目:国家自然科学基金重点项目(51875028);国家自然科学基金面上项目(91960203)
作者单位
张鸿滨 北京航空航天大学 机械工程及自动化学院,北京 100191 
赵文硕 山东理工大学 机械工程学院,山东 淄博 255000 
郭致远 北京航空航天大学 机械工程及自动化学院,北京 100191 
勾睿杰 北京航空航天大学 机械工程及自动化学院,北京 100191 
李勋 北京航空航天大学 机械工程及自动化学院,北京 100191 
AuthorInstitution
ZHANG Hong-bin School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 
ZHAO Wen-shuo School of Mechanical Engineering, Shandong University of Technology, Shandong Zibo 255000, China 
GUO Zhi-yuan School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 
GOU Rui-jie School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 
LI Xun School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究车削和铣削加工表面塑性变形层中纤维组织方向对钛合金TC4试件抗疲劳性能的影响规律和机理,完善表面完整性研究体系,为实际航空结构件的抗疲劳制造提供参考。方法 基于钛合金TC4进行车削和铣削加工的表面完整性试验和试件疲劳性能测试试验,通过合理地选用加工参数以控制试件的表面完整性指标,从而更加直观地分析塑性变形层中纤维组织方向与试件疲劳寿命之间的关系。结果 实验中车削疲劳试件的表面粗糙度、表面显微硬度和表面残余应力3个指标均优于铣削试件,两者的表面形貌也十分类似,但后者的抗疲劳性能达到前者的12~48倍,塑性变形层中纤维组织方向的不同是铣削试件抗疲劳性能远大于车削试件的主要因素。结论 不同加工方式形成的加工表面机制不同,表层纤维组织的塑性变形方向和变形程度也存在较大差异。车削疲劳试件的纤维组织沿试件的周向,铣削疲劳试件的纤维组织沿试件的轴向,在承受轴向的交变载荷时,沿着轴向的纤维组织可以抑制疲劳裂纹的萌生和扩展,大幅提升钛合金TC4试件的抗疲劳性能。
英文摘要:
      When plastic deformation of materials is caused by machining, the surface of the specimen will appear a degree of fiber structure distortion along the cutting speed direction of the tool, which will change the stress direction along the grain boundary inside the surface metal grains. Therefore, when the direction of metal fiber structure is parallel or perpendicular to the loading direction, its influence on the fatigue performance of the specimen is necessarily different. The work aims to explore the influence law and mechanism of the fiber structure direction in the plastic deformation layer of the turning and milling surface on the fatigue resistance of TC4 titanium alloy specimens, improve the surface integrity research system, and provide references for fatigue resistance manufacturing of actual aerospace structural parts. With TC4 titanium alloy as the test material, the surface integrity test of turning and milling processing and the fatigue performance test of the specimens were carried out. By selecting turning tools and milling tools with the same radius, the fatigue specimens with the two machining methods had similar surface morphology. Processing parameters were selected reasonably to control the surface roughness, surface microhardness and surface residual compressive stress of the fatigue specimens. Through the above measures, the relationship between the direction of the fiber structure in the plastic deformation layer and the fatigue life of the specimens can be analyzed more intuitively. In this experiment, surface roughness, surface microhardness and surface residual stress of the turned fatigue specimens were better than those of the milled specimens, and the surface morphologies of the two were very similar, however, the fatigue resistance of the latter was 12 to 48 times that of the former. The large difference in fatigue life cannot be explained by surface roughness, surface microhardness, surface residual stress and surface morphology. By observing the surface microstructure, it is found that the direction of the fiber structure in the plastic deformation layer on the surface of the two specimens is different, which is the dominant factor that the fatigue resistance of the milling specimens is much greater than that of the turning specimens. Turning and milling are different in the mechanisms for forming the machined surface. The plastic deformation direction and deformation degree of the surface fiber structure are also quite different. The fiber structure of the turning fatigue specimens is along the circumferential direction of the specimens, and the fiber structure of the milling fatigue specimens is along the axial direction of the specimens. Under the alternating load in the axial direction, the fiber structure along the axial direction can inhibit the initiation and propagation of fatigue cracks, especially the former period. Thus, the fatigue resistance of milling TC4 titanium alloy specimens is greatly improved. On the premise of meeting the design requirements of the machined surface quality, by selecting the machining method with the same cutting speed direction and the loading direction of the specimens, the direction of the fiber structure in the machined plastic deformation layer is the same as the direction of the alternating load thereby improving the fatigue resistance of the specimens.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20629205位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号