潘伶,谢旭清,郭锦阳.纳米液滴撞击润湿梯度表面的分子动力学模拟[J].表面技术,2022,51(11):395-404.
PAN Ling,XIE Xu-qing,GUO Jin-yang.Molecular Dynamics Simulation of Nanodroplet Impacting on Wettability Gradient Surface[J].Surface Technology,2022,51(11):395-404
纳米液滴撞击润湿梯度表面的分子动力学模拟
Molecular Dynamics Simulation of Nanodroplet Impacting on Wettability Gradient Surface
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.11.037
中文关键词:  纳米液滴  撞击  润湿梯度  分子动力学模拟  弹跳  铺展
英文关键词:nanodroplets  impact  wettability gradient  molecular dynamics simulation  bounce  spreading
基金项目:国家自然科学基金(51975123);福建省产学合作项目(2020H6025);晋江市福大科教园区发展中心科研项目(2019?JJFDKY?54)
作者单位
潘伶 福州大学 机械工程及自动化学院,福州 350108 
谢旭清 福州大学 机械工程及自动化学院,福州 350108 
郭锦阳 福州大学 机械工程及自动化学院,福州 350108 
AuthorInstitution
PAN Ling School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 
XIE Xu-qing School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 
GUO Jin-yang School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究在液滴撞击固体表面的过程中,撞击速度和润湿梯度对液滴运动的影响。方法 采用分子动力学方法模拟纳米液滴以不同初始下落速度v0撞击带有润湿梯度的固体表面,通过改变固体表面纳米方柱的间隙来构建润湿梯度,方柱间隙越小则接触角越小、润湿性能越好。结果 当v0为0.3~1.1 nm/ps时,液滴撞击固体表面后沿固体表面朝着润湿性较强的方向移动;在v0为0.7~1.1 nm/ps时,液滴出现了二次铺展;受到液滴的初始动能和钉扎效应的影响,液滴质心离开润湿梯度表面时的移动速度vt出现了2个拐点。当v0为1.2~1.5 nm/ps时,液滴在撞击固体表面后会发生弹跳,此时液滴在v0垂直方向的速度分量随着v0的增大呈线性增大趋势,而在v0水平方向的速度分量为定值(0.017 nm/ps);液滴的弹跳速度v和弹跳角α会随着v0的增大而增大。结论 在液滴撞击带有润湿梯度的固体表面的过程中,最大铺展因子βmax与v0近似呈线性关系;低速液滴撞击固体表面后会被捕捉,并沿着润湿性强的方向移动,提出了不同撞击速度区间中vt与v0的关系式;高速液滴在撞击后会沿着润湿性较好的一侧发生弹跳,提出了液滴弹跳速度、角度与v0的关系式。
英文摘要:
      The work aims to study the effects of different impact velocity and wettability gradient on droplet movement during the process of droplet impacting on solid surface. The specific data for spreading and bouncing droplets were obtained by molecular dynamics (MD) simulation, which was difficult to be measured quantitatively in the experiment and had reference value for guiding engineering practice. The MD method was used to simulate the nanodroplet impacting on solid surface with wettability gradient at different initial velocities v0. The behavior of droplet impacting on solid surface was affected by droplet impact velocity, presence of impurities in the droplet and solid surface characteristics. The solid surface characteristics mainly included wettability, surface roughness and temperature. The wettability of solid surface could be reflected by the contact angle of droplet surface. The wettability gradient was constructed by changing the gap of nano square columns on solid surface. The smaller the square column gap, the smaller the contact angle, and the better the wettability. When v0=0.3-1.1 nm/ps, the droplet after hitting the surface moved along the direction of good wettability on the solid surface. When v0=0.3-0.5 nm/ps, the droplet was hindered by the pinning effect and hardly spread. When v0=0.7-1.1 nm/ps, the droplet underwent secondary spreading. Owing to the effect of initial kinetic energy and pinning effect of the droplet, two inflection points were observed in the curve of moving velocity vt when the droplet centroid left the gradient surface. The x-direction velocity vt of the droplet leaving the gradient surface was mainly related to the initial velocity v0 and the total spreading time T of the droplet. The x-direction velocity vt increased with the increase of the initial kinetic energy of the droplet. vt decreased with the increase of T, because the kinetic energy of droplets was consumed more in the spreading process. When v0=1.2-1.5 nm/ps, the droplet bounced after hitting solid surface. At this time, the velocity component of the droplet in the vertical direction of v0 increased with the increase of v0, and the relationship between them was linear, while the velocity component in the horizontal direction of v0 remained unchanged, which corresponded to the fixed value of 0.017 nm/ps. The bouncing velocity v and angle α of droplet increased with the increase of v0. In the process when a droplet impacts on a solid surface with wettability gradient, the relationship between maximum spreading factor βmax and v0 is proposed to be approximately linear. After the impact, the low-velocity droplets are captured, which then move along the direction of good wettability. The relationship between vt and v0 in different impact velocity ranges is proposed herein. The high-velocity droplets bounce along the side with good wettability. Furthermore, the relationship among droplet bounce velocity, angle, and v0 is proposed, respectively.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20732679位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号