付天琳,安楠楠,王康,张乾,陈飞帆,许志华.表面梯度纳米晶结构对06Cr19Ni10钢抗空蚀性能的影响[J].表面技术,2022,51(4):247-254, 262. FU Tian-lin,AN Nan-nan,WANG Kang,ZHANG Qian,CHEN Fei-fan,XU Zhi-hua.Effect of Surface Gradient Nanocrystalline Structure on the Cavitation Erosion Resistance of 06Cr19Ni10 Steel[J].Surface Technology,2022,51(4):247-254, 262 |
表面梯度纳米晶结构对06Cr19Ni10钢抗空蚀性能的影响 |
Effect of Surface Gradient Nanocrystalline Structure on the Cavitation Erosion Resistance of 06Cr19Ni10 Steel |
投稿时间:2020-11-10 修订日期:2021-10-15 |
DOI:10.16490/j.cnki.issn.1001-3660.2022.04.025 |
中文关键词: 06Cr19Ni10钢 喷丸 梯度纳米晶结构 表面特性 空蚀 |
英文关键词:06Cr19Ni10 steel shot peening gradient nanocrystalline structure surface characteristic cavitation corrosion |
基金项目: |
作者 | 单位 |
付天琳 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
安楠楠 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
王康 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
张乾 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
陈飞帆 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
许志华 | 美的集团 生活电器事业部 研究院,广东 佛山 528000 |
|
Author | Institution |
FU Tian-lin | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
AN Nan-nan | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
WANG Kang | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
ZHANG Qian | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
CHEN Fei-fan | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
XU Zhi-hua | Research Institute of Household Appliance Division, Midea Group, Guangdong Foshan 528000, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 对06Cr19Ni10钢进行表面剧烈塑性变形处理,利用获得的表面梯度纳米晶结构提高其抗空蚀性能。方法 采用高能喷丸法,在0.3~0.6 MPa范围内调节喷丸压力,获得不同组织结构的梯度纳米晶结构。使用光学显微镜、透射电镜、X射线衍射仪和显微硬度计对梯度纳米晶结构进行形貌、物相分析及截面硬度分析,使用电化学工作站和自制的空蚀检测仪对梯度纳米晶结构进行抗腐蚀性能及抗空蚀性能检测。结果 截面金相表明,通过调节喷丸压力,可以在06Cr19Ni10钢表面形成一层厚度为50~100 µm的梯度纳米晶结构。XRD结果显示,喷丸处理可以使(111)、(200)、(220)、(311)、(222)晶向的衍射峰明显宽化。通过Voigt函数法计算可知,梯度纳米晶结构的顶层晶粒尺寸为32~87 nm,表面硬度由180HV0.05提高至360~525HV0.05。此外,喷丸处理可以提高06Cr19Ni10钢的自腐蚀电位至‒0.385 V(vs. SCE),降低其自腐蚀电流密度至3.512 µA/cm2,明显延长其空蚀孕育期,最大抗空蚀系数约为未处理试样的12.92倍。结论 梯度纳米晶结构可以全面提高06Cr19Ni10钢的表面特性,显著提高其抗空蚀性能。 |
英文摘要: |
By performing severe plastic deformation treatment, surface gradient nanocrystalline structure can be obtained on the surface of 06Cr19Ni10 and consequently, its cavitation resistance can be imporved. In this research, the high-energy shot peening method was used. Gradient nanocrystalline structures with different tissue structures were obtained by adjusting the shot peening pressure within the range of 0.3~0.6 MPa. Optical microscope, X-ray diffractometer and microhardness tester were used to perform morphology, phase analysis and cross-section hardness analysis on the gradient nanocrystalline structures. In addition, electrochemical workstation and self-made cavitation tester were used to examine the corrosion resistance and cavitation resistance of gradient nanocrystalline structures. Results of the cross-section metallography showed that by adjusting the shot peening pressure, a layer of gradient nanocrystalline structure with thickness of 50~100 µm can be formed on the surface of 06Cr19Ni10; XRD results showed that shot peening can broaden (111), (200), (220), (311), (222) diffraction peaks of the crystal orientation. According to the calculation using Voigt function method, the grain size of the top layer of the gradient nanocrystalline structure was in the range of 32~87 nm and the surface hardness was increased from 180HV0.05 to 360~525HV0.05. In addition, shot peening can increase the self-corrosion potential of 06Cr19Ni10 to ‒0.385 V (vs. SCE) and reduce its self-corrosion current density to 3.512 µA/cm2, thus, significantly extend its cavitation incubation period. The maximum cavitation corrosion resistance coefficient is approximately 12.92 times of that of the untreated sample. The gradient nanocrystalline structure can comprehensively improve the surface characteristics of 06Cr19Ni10, and ultimately improve its cavitation resistance performance. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|