吴成萌,冯爱新,吴旭浩,余满江,张成龙,徐国秀.高温松弛软化带辅助激光熔覆制备复合涂层[J].表面技术,2022,51(3):353-362.
WU Cheng-meng,FENG Ai-xin,WU Xu-hao,YU Man-jiang,ZHANG Cheng-long,XU Guo-xiu.Preparation of Composite Coating by High Temperature Relaxation Softening Zone Aided with Laser Cladding[J].Surface Technology,2022,51(3):353-362
高温松弛软化带辅助激光熔覆制备复合涂层
Preparation of Composite Coating by High Temperature Relaxation Softening Zone Aided with Laser Cladding
投稿时间:2021-03-10  修订日期:2021-08-25
DOI:10.16490/j.cnki.issn.1001-3660.2022.03.038
中文关键词:  激光熔覆  复合涂层  高温松弛软化带  残余拉应力  裂纹
英文关键词:laser cladding  composite coating  high temperature relaxation softening zone  residual tensile stress  crack
基金项目:温州市科技计划(2018ZG018)
作者单位
吴成萌 温州大学 机电工程学院,浙江 温州 325035 
冯爱新 温州大学 机电工程学院,浙江 温州 325035 
吴旭浩 浙江久恒光电科技有限公司,浙江 瑞安 325207 
余满江 温州大学 机电工程学院,浙江 温州 325035 
张成龙 温州大学 机电工程学院,浙江 温州 325035 
徐国秀 温州大学 机电工程学院,浙江 温州 325035 
AuthorInstitution
WU Cheng-meng School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
FENG Ai-xin School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
WU Xu-hao Zhejiang Jiuheng Optoelectronics Technology Co., Ltd., Ruian 325207, China 
YU Man-jiang School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
ZHANG Cheng-long School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
XU Guo-xiu School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究抑制玻璃冲头表面热疲劳裂纹失效和粘着磨损的规律。方法 利用高温松弛软化带辅助激光熔覆制备复合涂层,以Ni60+35%WC(质量分数)粉末作为复合涂层材料,45#钢作为基体材料,316不锈钢网作为高温松弛软化带,研究高温松弛软化带对复合涂层组织结构及其耐磨性能的影响。结果 未加316不锈钢网时,复合涂层表面的磨损量和摩擦因数分别0.04 g和0.32,磨痕宽度为(2120±250) μm,残余拉应力较大且分布不均衡,伴随有大量裂纹产生。加入316不锈钢网后,复合涂层表面的磨损量和摩擦因数分别为0.03 g和0.25,磨痕宽度为(1202±100) μm,残余拉应力小且分布较均衡,伴随有少量裂纹产生。316不锈钢网可以吸收复合涂层表面的残余拉应力,减少裂纹扩展甚至形成无裂纹的复合涂层,使复合涂层表面纵向和横向残余应力分布均衡,同时添加Ni60+35%WC(质量分数)粉末可提高复合涂层表面的耐磨性和硬度。结论 通过在玻璃冲头表面加入高温松弛软化带辅助激光熔覆制备复合涂层可以显著提高其硬度和耐磨性,并抑制复合涂层表面裂纹的产生与扩展。
英文摘要:
      The work aims to study the law of inhibiting the failure of thermal fatigue crack and adhesive wear on the surface of glass punch. The composite coating was prepared by high temperature relaxation softening zone aided with laser cladding, and the effect of high temperature relaxation softening zone on the structure and wear resistance of composite coating was studied with Ni60+35% WC (mass fraction) powder as a composite coating material, 45# steel as base material, and 316 stainless steel mesh as high temperature relaxation softening zone. Before adding 316 stainless steel mesh, the surface abrasion and friction coefficient of the composite coating were 0.04 g and 0.32 respectively. In addition, the width of the wear scar on the surface of the composite coating was (2120±250) μm The residual tensile stress was large and unevenly distributed, accompanied by a large number of cracks. After adding 316 stainless steel mesh, the surface abrasion and friction coefficient of the composite coating were 0.03 g and 0.25, respectively, the width of the wear scar was (1202±100) μm. The residual tensile stress was small and evenly distributed. The 316 stainless steel mesh can absorb the residual tensile stress of composite coating, inhibit the propagation of cracks and even form a crack-free composite coating, so that the longitudinal and transverse residual stress distribution of composite coating surface can be balanced. At the same time, the surface of the composite coating had high wear resistance and hardness due to the simultaneous addition of Ni60+35% WC (mass fraction) powder. The final result fully shows that, high temperature relaxation softening zone aided with laser cladding on the surface of the glass punch can significantly improve the hardness and wear resistance of the composite coating, and inhibit the generation and propagation of surface cracks of the composite coating.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27977657位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号