弯艳玲,严灿东,王博,于化东.微结构几何参数对铝合金表面结冰性能的影响[J].表面技术,2022,51(1):272-279.
WAN Yan-ling,YAN Can-dong,WANG Bo,YU Hua-dong.The Influence of Microstructure Geometric Parameters on the Icing Properties of Aluminum Alloy Surface[J].Surface Technology,2022,51(1):272-279
微结构几何参数对铝合金表面结冰性能的影响
The Influence of Microstructure Geometric Parameters on the Icing Properties of Aluminum Alloy Surface
投稿时间:2021-04-09  修订日期:2021-05-31
DOI:10.16490/j.cnki.issn.1001-3660.2022.01.029
中文关键词:  电火花线切割加工  几何参数  微结构  超疏水  抗结冰性能  稳定性
英文关键词:wire electrical discharge machining (WEDM)  geometric parameters  microstructure  superhydrophobicity  anti-icing performance  stability
基金项目:国家自然科学基金联合基金项目(U19A20103);吉林省科技发展计划项目(20190101005JH,20180101324)
作者单位
弯艳玲 长春理工大学 跨尺度微纳制造教育部重点实验室,长春 130000 
严灿东 长春理工大学 跨尺度微纳制造教育部重点实验室,长春 130000 
王博 长春理工大学 跨尺度微纳制造教育部重点实验室,长春 130000 
于化东 长春理工大学 跨尺度微纳制造教育部重点实验室,长春 130000 
AuthorInstitution
WAN Yan-ling Key Laboratory of the Ministry of Education on Cross-Scale Micro and Nano-Manufacturing, Changchun University of Science and Technology, Changchun 130000, China 
YAN Can-dong Key Laboratory of the Ministry of Education on Cross-Scale Micro and Nano-Manufacturing, Changchun University of Science and Technology, Changchun 130000, China 
WANG Bo Key Laboratory of the Ministry of Education on Cross-Scale Micro and Nano-Manufacturing, Changchun University of Science and Technology, Changchun 130000, China 
YU Hua-dong Key Laboratory of the Ministry of Education on Cross-Scale Micro and Nano-Manufacturing, Changchun University of Science and Technology, Changchun 130000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 制备具有稳定性的抗结冰表面,并探讨表面微结构几何参数对表面结冰性能的影响。方法 以铝合金为基底材料,采用电火花线切割加工方法,在材料表面构建可控微米级尺寸沟槽与方柱阵列结构,对试件进行润湿性、结冰性能以及稳定性测试。结果 制备的微结构表面超疏水或者近超疏水。微结构表面具有优异的抗结冰性能,且方柱结构表面的抗结冰性能优于沟槽结构表面。微结构高度的增加以及宽度的减小都会延迟水滴在微结构表面的结冰时间,且宽度的影响程度更大。结冰-融冰循环试验表明,微结构表面具有一定的稳定性。分析抗结冰机理可知,微结构表面的两级结构,形成了“气垫效应”,提高了表面疏水性,减小了固液接触面积;微结构高度增加、宽度减小以及形态由沟槽变为方柱,使传热热阻增大,传热面积减小,减缓了三相接触时液滴的热能损失,因此延长了结冰时间。结论 电火花线切割加工方法在构建微结构的同时,提高了表面的疏水性,并且微结构几何参数不同程度地提高了表面的抗结冰性能,为探究新型抗结冰表面提供了一种新的思路。
英文摘要:
      This paper is to prepare a stable anti-icing surface, and to explore the influence of surface microstructure geometric parameters on the surface icing performance. In this paper, aluminum alloy is used as the base material, and the wire electrical discharge machining (WEDM) is used to construct an array structure of controllable micron-sized grooves and square pillars on the surface of the material. The wettability, icing performance and stability of the sample were tested. The results show that the surface of the prepared microstructure is superhydrophobic or nearly superhydrophobic. The microstructure surface has excellent anti-icing performance, and the anti-icing performance of the square pillar structure surface is better than that of the groove structure surface. The increase in the height of the microstructure and the decrease in the width will delay the freezing time of the water droplets on the surface of the microstructure, and the width has a greater influence. The freeze-melt cycle test shows that the surface of the microstructure has a certain degree of stability. The analysis of the anti-icing mechanism shows that the two-level structure of the microstructure surface forms the “air cushion effect”, which improves the hydrophobicity of the surface and reduces the solid-liquid contact area; the height of the microstructure increases, the width decreases, and the shape changes from grooves to square pillars, which increases the heat transfer resistance, reduces the heat transfer area, and slows down the thermal energy loss of the droplets during three-phase contact, thus prolonging the freezing time. The WEDM method improves the hydrophobicity of the surface while constructing the microstructure, and the geometric parameters of the microstructure improve the anti-icing performance of the surface to varying degrees, providing a new idea for exploring new anti-icing surfaces.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20791256位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号