岳海霞,戴厚富,胡洋,周玉琪.双磨粒抛光单晶Si的分子动力学模拟[J].表面技术,2021,50(9):370-378.
YUE Hai-xia,DAI Hou-fu,HU Yang,ZHOU Yu-qi.Molecular Dynamics Simulation of Double Abrasive Polished Single Crystal Si[J].Surface Technology,2021,50(9):370-378
双磨粒抛光单晶Si的分子动力学模拟
Molecular Dynamics Simulation of Double Abrasive Polished Single Crystal Si
投稿时间:2020-09-26  修订日期:2021-03-12
DOI:10.16490/j.cnki.issn.1001-3660.2021.09.039
中文关键词:  单晶Si  双磨粒  三体磨粒抛光  去除机理  分子动力学
英文关键词:single crystal Si  double abrasive  three-body abrasive polishing  removal mechanism  molecular dynamics
基金项目:贵州省研究生科研基金立项课题(黔教合YJSCXJH[2020]052);贵州省科学技术基金一般项目(JC[2020]1Y227);教育部重点实验室开放基金(KY[2019]042);中国博士后科学基金(2019M662765);国家自然科学基金面上项目(51675172)
作者单位
岳海霞 贵州大学,贵阳 550000 
戴厚富 贵州大学,贵阳 550000 
胡洋 贵州大学,贵阳 550000 
周玉琪 贵州大学,贵阳 550000 
AuthorInstitution
YUE Hai-xia Guizhou University, Guiyang 550000, China 
DAI Hou-fu Guizhou University, Guiyang 550000, China 
HU Yang Guizhou University, Guiyang 550000, China 
ZHOU Yu-qi Guizhou University, Guiyang 550000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过分子动力学(MD)模拟,获得双金刚石磨粒抛光单晶Si的去除机理。方法 采用一种新的单晶硅三体磨粒抛光方法,测试双磨粒的抛光深度和横向/纵向间距对三体磨粒抛光的影响,从而获得相变、表面/亚表面损伤等情况,并获得抛光过程中温度及势能的变化情况。结果 对比抛光深度为1、3 nm时配位数的情况,发现抛光深度为1 nm时,抛光完成时相变的原子数是4319,而抛光深度为3 nm时,相变原子数为12 516。随着磨粒在Si工件表面抛光深度的加深,抛光和磨蚀引起的相变原子和损伤原子的数目增加。仿真结果还表明,单晶Si相变原子的种类和数目随磨粒横向间距的增加而增加,随着纵向间距的增加反而减少。系统的初始温度设为298 K,抛光深度为1 nm时,抛光完成时的温度是456 K,而抛光深度为3 nm时,温度是733 K。抛光完成时,纵向组和横向组的温度仅相差30~40 K。在抛光深度、横向间距和纵向间距3个对照组中,抛光深度对亚表面损伤的影响最大。抛光深度为3 nm时,亚表面的损伤深度最大,从而导致更多的材料从单晶Si工件表面去除。结论 双磨粒的抛光深度和间距不仅对硅的表面微观结构产生影响,还对相变产生影响。模拟参数相同时,较大的抛光深度和横向间距下会产生更多的相变原子,因此相变受抛光深度的影响最大,受纵向间距的影响最小。
英文摘要:
      Molecular dynamics (MD) simulation was used to obtain the removal mechanism of double diamond abrasive polished single-crystal Si. In this study, a new three-body abrasive polishing method for monocrystalline silicon was used to test the effects of polishing depth and lateral/ longitudinal spacing of double abrasive grains on the three-body abrasive polishing process, so as to obtain insights on phase transformation, surface/subsurface damage, surface morphology, material removal and temperature and potential energy in the polishing process. Through comparison of coordination numbers when the polishing depth is 1 nm and 3 nm respectively, it is found that the atomic number of phase transition is 4319 at the end of polishing when the polishing depth is 1 nm, but 12 516 when the polishing depth is 3 nm. The number of phase change atoms and damage atoms increases when the polishing depth of abrasive particles on the surface of Si workpiece increases. The simulation results also show that the type and number of phase transition atoms in single crystal Si increase with the increase of lateral spacing, but decrease with the increase of longitudinal spacing. The initial temperature of the system is set at 298 K. When the polishing depth is 1 nm, the polishing temperature is 456 K at the end, and when the polishing depth is 3 nm, the temperature is 733 K at the end. At the end of polishing, the temperature difference between the longitudinal group and the lateral group is only 30~40 K. Among the three control groups (polishing depth, lateral and longitudinal spacing), the polishing depth has the greatest influence on the subsurface damage. When the polishing depth is 3 nm, the subsurface damage depth is the largest, which leads to more material removal from the surface of single crystal Si workpiece. This study shows that the polishing depth and spacing of double abrasive particles not only affect the surface microstructure of silicon, but also affect the phase transformation. When the simulation parameters are the same, larger polishing depth and lateral spacing will produce more phase transition atoms, because the phase transition is most affected by polishing depth and least affected by longitudinal spacing.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第24088383位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号