仇溢,种详远,甄明晖,王傅巍.氧化石墨烯对树脂基摩擦材料性能的影响[J].表面技术,2021,50(3):276-283, 322.
QIU Yi,CHONG Xiang-yuan,ZHEN Ming-hui,WANG Fu-wei.Effect of Graphene Oxide on Properties of Resin-based Friction Materials[J].Surface Technology,2021,50(3):276-283, 322
氧化石墨烯对树脂基摩擦材料性能的影响
Effect of Graphene Oxide on Properties of Resin-based Friction Materials
投稿时间:2020-03-02  修订日期:2020-05-18
DOI:10.16490/j.cnki.issn.1001-3660.2021.03.029
中文关键词:  氧化石墨烯  酚醛树脂  均匀分散  物理性能  力学性能  摩擦性能
英文关键词:graphene oxide  phenolic resin  homogeneous dispersion  physical properties  mechanical properties  friction properties
基金项目:国家重点研发计划资助项目(2017YFB0310903)
作者单位
仇溢 山东金麒麟股份有限公司 山东省制动摩擦材料制造技术重点工程实验室,山东 德州 253000 
种详远 山东金麒麟股份有限公司 山东省制动摩擦材料制造技术重点工程实验室,山东 德州 253000 
甄明晖 山东金麒麟股份有限公司 山东省制动摩擦材料制造技术重点工程实验室,山东 德州 253000 
王傅巍 山东金麒麟股份有限公司 山东省制动摩擦材料制造技术重点工程实验室,山东 德州 253000 
AuthorInstitution
QIU Yi Shandong Key Laboratory of Brake Friction Material Manufacturing Technology, Shandong Gold Phoenix Co., Ltd, Dezhou 253000, China 
CHONG Xiang-yuan Shandong Key Laboratory of Brake Friction Material Manufacturing Technology, Shandong Gold Phoenix Co., Ltd, Dezhou 253000, China 
ZHEN Ming-hui Shandong Key Laboratory of Brake Friction Material Manufacturing Technology, Shandong Gold Phoenix Co., Ltd, Dezhou 253000, China 
WANG Fu-wei Shandong Key Laboratory of Brake Friction Material Manufacturing Technology, Shandong Gold Phoenix Co., Ltd, Dezhou 253000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 提高树脂基摩擦材料和对偶件刹车盘的摩擦磨损性能。方法 采用摩擦材料预混料装置,结合犁耙式混料机,将氧化石墨烯(GO)均匀分散到酚醛树脂基制动摩擦材料中。对材料进行物理性能和力学性能测试,采用LINK2900惯量台架试验机进行摩擦磨损研究,采用SEM和EDS进行摩擦界面微观形貌和成分分析。结果 当GO体积分数从0增加到1.00%时,摩擦材料的比热容、摩擦界面切向热导率和剪切模量显著增大,摩擦材料的弹性模量减小。确定了GO的最佳体积分数为0.75%,此体积分数下,名义摩擦系数和一衰系数达到最大,分别为0.437和0.363,摩擦材料和对偶件刹车盘的耐磨性最佳。相比未添加GO配方,摩擦材料的磨损量减小13.70%,对偶件刹车盘的磨损量减小12.32%。结论 适宜体积分数的GO提高了基体树脂的热结构稳定性、耐热性和系数稳定性,摩擦材料和对偶件刹车盘表面发生材料转移形成摩擦层,有效改善了摩擦材料表面裂纹和对偶盘表面孔洞。GO改变了摩擦片和盘之间的热流分配以及垂向传导散热和切向对流散热比例,可有效提高摩擦材料和对偶件的摩擦磨损性能。
英文摘要:
      To improve the friction and wear resistance of the resin-based friction material and the counterpart brake disc. In this paper, a friction material premixing device combined with a plow rake mixer are used to uniformly disperse graphene oxide (GO) into the phenolic resin-based brake friction material. The physical and mechanical properties of the material are tested. The friction and wear resistance are studied by using a LINK 2900 inertia dyno test machine, and the micro-morphology and composition analysis of the friction interface are performed by using SEM and EDS. The results show that increasing the GO volume fraction from 0 to 1.00% significantly increases the specific heat capacity of the friction material, the thermal conductivity of the friction interface in the tangential and the shear modulus, and reduces the elastic modulus of the friction material. The optimal volume fraction of GO is determined to be 0.75%, and the nominal friction coefficient and the first fade coefficient reached 0.437 and 0.363 respectively. The wear resistance of the friction material and the counterpart brake disc are the best. Compared with the formula without added GO, the wear of the friction material is reduced by 13.70%, and the wear of the counterpart brake disc is reduced by 12.32%. The appropriate volume fraction of GO improves the thermal structural stability of the matrix resin and improves heat resistance and coefficient stability. Material transfer occurs on the surface of the friction material and the brake disc of the dual component to form a friction layer, which effectively improves the surface cracks of the friction material and the disk surface holes. GO changes the heat flow distribution between the disc and the pad, and changes the ratio of vertical conduction heat dissipation and tangential convection heat dissipation, which can effectively improve the friction and wear resistance of friction materials and counterparts.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20741267位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号