杜中德,刘欢,沈浩田,何世伟,华中胜.泡沫铝表面Ni-W共沉积及性能研究[J].表面技术,2020,49(10):233-238.
DU Zhong-de,LIU Huan,SHEN Hao-tian,HE Shi-wei,HUA Zhong-sheng.Ni-W Co-deposition and Property of Closed Cell Aluminum Foam[J].Surface Technology,2020,49(10):233-238
泡沫铝表面Ni-W共沉积及性能研究
Ni-W Co-deposition and Property of Closed Cell Aluminum Foam
投稿时间:2019-12-12  修订日期:2020-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2020.10.026
中文关键词:  泡沫铝  共沉积  强度  耐蚀性  能量吸收
英文关键词:aluminum foam  co-deposition  strength  corrosion resistance  energy absorption
基金项目:安徽省科技厅高校研究重点项目(KJ2017A048);国家自然科学基金资助项目(51904005);安徽省大学生创新创业培训计划项目(201610360117)
作者单位
杜中德 安徽工业大学 a.材料科学与工程学院,安徽 马鞍山 243002 
刘欢 安徽工业大学 b.冶金工程学院 c.冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002 
沈浩田 安徽工业大学 b.冶金工程学院 c.冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002 
何世伟 安徽工业大学 b.冶金工程学院 c.冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002 
华中胜 安徽工业大学 b.冶金工程学院 c.冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002 
AuthorInstitution
DU Zhong-de a.School of Materials Science & Engineering, Anhui University of Technology, Maanshan 243002, China 
LIU Huan b.School of Metallurgical Engineering, c.Key laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology, Maanshan 243002, China 
SHEN Hao-tian b.School of Metallurgical Engineering, c.Key laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology, Maanshan 243002, China 
HE Shi-wei b.School of Metallurgical Engineering, c.Key laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology, Maanshan 243002, China 
HUA Zhong-sheng b.School of Metallurgical Engineering, c.Key laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui University of Technology, Maanshan 243002, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 进一步提高泡沫铝材料的强度及耐蚀特性,同时明确金属涂覆泡沫铝材料的综合耗能指标。方法 对泡沫铝表面预镀镍层后,在硫酸盐体系下,利用脉冲电镀进行镍钨合金共沉积。通过准静态压缩测试及扫描电镜分析,得到泡沫铝、预镀镍泡沫铝及镍钨共沉积泡沫铝材料的特征曲线及变形模式,综合分析材料的增强机理及综合耗能指标。采用电化学测试对比分析材料耐蚀特性。结果 泡沫铝表面共沉积镍钨合金层后,其峰值应力比镀镍泡沫铝平均提高了10%,较基体泡沫铝平均提高了约45%。强度提高来源于变形过程中包覆金属的支撑及铝基体-镍镀层界面处的拉伸撕裂。镍钨合金共沉积使泡沫铝的能量吸收增加38%,吸能效率有所提升,且其自腐蚀电位较镀镍泡沫铝及基体泡沫铝明显正移,腐蚀倾向及腐蚀速率降低。结论 泡沫铝表面镍钨合金共沉积使其强度、耐蚀性较镀镍泡沫铝进一步提高。由于特征曲线及变形模式的改变,镍钨共沉积泡沫铝的耗能特性提升明显。
英文摘要:
      The work aims to improve the strength and corrosion resistance of aluminum foam and clarify the comprehensive energy consumption indicators of aluminum foam with metal coating. Closed aluminum foam was treated by pulse nickel-tungsten co-deposition process in sulfate system after nickel plating. The quasi-static compression and SEM were utilized to obtain the characteristic curve and deformation mode of aluminum foam, Ni coated aluminum foam and aluminum foam with Ni-W coating. Furthermore, the enhancement mechanism and energy consumption indicators of materials were analyzed comprehensively. Corrosion resistance of materials was investigated comparatively via electrochemical test. After nickel- tungsten co-deposition process, the peak stress of aluminum foam was 10% higher than that of aluminum foam with Ni coating and about 45% higher than the substrate aluminum foam. This was due to the support of the coating as well as the tearing effect between Al-Ni interface in the deformation process. The energy absorption of aluminum foam increased by 38% after nickel-tungsten co-deposition and the energy absorption efficiency of aluminum foam also increased. Meanwhile, the self-corrosion potential was obviously positively shifted compared with nickel-plated aluminum foam and substrate aluminum foam, and the corrosion tendency and corrosion rate reduced. Co-deposition of nickel-tungsten alloy on the surface of aluminum foam further improves its strength and corrosion resistance compared with nickel-plated foamed aluminum. Due to the change of the characteristic curve and deformation mode, the energy consumption characteristics of Ni-W co-deposition aluminum foam are improved significantly.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第27980716位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号