吴嘉俊,刘学军,赵吉宾,乔红超,孙博宇,陆莹,郭跃彬.基于空气中冲击波信号能量的激光冲击强化在线检测方法[J].表面技术,2019,48(10):100-106.
WU Jia-jun,LIU Xue-jun,ZHAO Ji-bin,QIAO Hong-chao,SUN Bo-yu,LU Ying,GUO Yue-bin.Online Detection Method of Laser Shock Peening Based on Shock Wave Signal Energy in Air[J].Surface Technology,2019,48(10):100-106
基于空气中冲击波信号能量的激光冲击强化在线检测方法
Online Detection Method of Laser Shock Peening Based on Shock Wave Signal Energy in Air
投稿时间:2019-01-04  修订日期:2019-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2019.10.012
中文关键词:  激光冲击强化  冲击波  信号能量  激光能量  残余应力  在线检测
英文关键词:laser shock peening  shock wave  signal energy  laser energy  residual stress  online detection
基金项目:国家基金委-辽宁省联合基金(U1608259);国家自然科学基金(51501219);国家重点研发计划(2016YFB1102704);国家科技支撑计划(2015BAF08B01-01)
作者单位
吴嘉俊 1.中国科学院沈阳自动化研究所,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110016;3.中国科学院大学,北京 100049 
刘学军 1.中国科学院沈阳自动化研究所,沈阳 110016;4.湖南工业大学,株洲 412007 
赵吉宾 1.中国科学院沈阳自动化研究所,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110016 
乔红超 1.中国科学院沈阳自动化研究所,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110016 
孙博宇 1.中国科学院沈阳自动化研究所,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110016 
陆莹 1.中国科学院沈阳自动化研究所,沈阳 110016;2.中国科学院机器人与智能制造创新研究院,沈阳 110016 
郭跃彬 5.阿拉巴马大学,美国 塔斯卡卢萨 AL 35486 
AuthorInstitution
WU Jia-jun 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China 
LIU Xue-jun 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 4. Hunan University of Technology, Zhuzhou 412007, China 
ZHAO Ji-bin 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 
QIAO Hong-chao 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 
SUN Bo-yu 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 
LU Ying 1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 
GUO Yue-bin 5. University of Alabama, Tuscaloosa AL 35486, USA 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 为克服激光冲击强化现有离线检测方法的缺点,提出了一种基于空气中冲击波信号能量的激光冲击强化在线检测方法。方法 利用波长为1064 nm、脉宽为14 ns、单脉冲能量为5~7 J的Nd:YAG激光器对经过振动时效处理的TC16钛合金试件进行激光冲击强化处理。用自主研制的信号放大器对空气中的冲击波信号进行一级放大后,再经前置放大器、数据采集卡传输到计算机控制系统,从而实现对空气中冲击波信号的采样、存储、滤波和数据分析,并从中提取冲击波信号能量。用X-350A型X射线应力测定仪测量TC16钛合金试件经激光冲击强化处理后的表面残余应力。最后对所得实验数据进行多项式拟合,以获得材料表面残余压应力与冲击波信号能量之间的经验公式。结果 经激光冲击强化处理后,材料表面形成了一定大小的残余压应力。随着激光能量的增加,材料表面残余压应力及冲击波信号能量均增加,且二者的增加趋势一致。结论 在激光冲击强化过程中,对空气中传播的冲击波信号进行采集和提取其信号能量,可以预测试件经激光冲击强化处理后的残余应力,能够准确判断激光冲击强化质量,从而实现工业过程的在线检测。
英文摘要:
      The work aims to propose an online detection method of laser shock peening based on shock wave signal energy in air to overcome the existing disadvantages of offline laser shock peening detection methods. The TC16 titanium alloy samples after the treatment of vibration stress relief were treated by Nd:YAG laser with a wavelength of 1064 nm, pulse width of 14 ns and pulse energy of 5~7 J. The shock wave signals in air were first amplified by the signal amplifier that independently developed by our research group, then transmitted to the computer control system through the preamplifier and the data acquisition card successively. So the sampling, storage, filtering and data analysis of shock wave signals in air were realized, then the shock wave signal energy was extracted. The surface residual stress of TC16 titanium alloy samples after the treatment of laser shock peening were measured by the X-350A X-ray stress tester. Finally, according to the obtained experimental data, an empirical formula between the surface residual stress of the material and the shock wave signal energy was obtained by polynomial fitting. The experimental results shown that after treatment of laser shock peening, there are a certain amount of residual compressive stress was formed on the surface of the material. At the same time, both the surface residual stress and shock wave signal energy were increased with the increases of laser energy, and their growth trends are consistent. In conclusion, during the process of laser shock peening, by collecting the shock wave signals propagating in air and extracting the shock wave signal energy, the residual stress of materials can be predicted and the quality of laser shock peening can be judged accurately, which will realize the online control of industrial process.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20627539位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号