杨进,施山山,殷启帅,郑勋,李振坤,赵少伟,杨育铭,王俊翔.中国南海油气井隔水导管腐蚀规律研究[J].表面技术,2019,48(6):274-281. YANG Jin,SHI Shan-shan,YIN Qi-shuai,ZHENG Xun,LI Zhen-kun,ZHAO Shao-wei,YANG Yu-ming,WANG Jun-xiang.The Conductor Corrosion Law Research of Oil and Gas Wells in South China Sea[J].Surface Technology,2019,48(6):274-281 |
中国南海油气井隔水导管腐蚀规律研究 |
The Conductor Corrosion Law Research of Oil and Gas Wells in South China Sea |
投稿时间:2018-10-30 修订日期:2019-06-20 |
DOI:10.16490/j.cnki.issn.1001-3660.2019.06.033 |
中文关键词: 南海海域 隔水导管 腐蚀速率 全面腐蚀 电流密度 阻抗弧 耐腐蚀 |
英文关键词:South China Sea conductor corrosion rate general corrosion density of corrosion current condensance arc corrosion resistance |
基金项目:油气重大专项资助(2016ZX05058-004-004,2016ZX05024-005-009) |
作者 | 单位 |
杨进 | 1.中国石油大学 (北京),北京 102249 |
施山山 | 1.中国石油大学 (北京),北京 102249 |
殷启帅 | 1.中国石油大学 (北京),北京 102249 |
郑勋 | 2.中海油能源发展股份有限公司 工程技术分公司,天津 300452 |
李振坤 | 2.中海油能源发展股份有限公司 工程技术分公司,天津 300452 |
赵少伟 | 3.中海石油(中国)有限公司 天津分公司,天津 300450 |
杨育铭 | 1.中国石油大学 (北京),北京 102249 |
王俊翔 | 1.中国石油大学 (北京),北京 102249 |
|
Author | Institution |
YANG Jin | 1.China University of Petroleum, Beijing, Beijing 102249, China |
SHI Shan-shan | 1.China University of Petroleum, Beijing, Beijing 102249, China |
YIN Qi-shuai | 1.China University of Petroleum, Beijing, Beijing 102249, China |
ZHENG Xun | 2.CNOOC Ener Tech-Drilling & Production Co., Tianjin 300452, China |
LI Zhen-kun | 2.CNOOC Ener Tech-Drilling & Production Co., Tianjin 300452, China |
ZHAO Shao-wei | 3. Tianjin Branch, CNOOC China Limited, Tianjin 300450, China |
YANG Yu-ming | 1.China University of Petroleum, Beijing, Beijing 102249, China |
WANG Jun-xiang | 1.China University of Petroleum, Beijing, Beijing 102249, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 针对我国南海海域使用过的六种材质隔水导管,系统性地分析其在60、90、180 d三个腐蚀周期及在大气区、飞溅区、潮差区、全浸区四个区带的腐蚀行为与腐蚀规律,为我国南海隔水导管材质优选提供理论依据。方法 首先,开展室内实验模拟海洋腐蚀环境,通过SEM扫描分析隔水导管在大气区、飞溅区、潮差区及全浸区的腐蚀特点,并针对六种材质挂片在四个区带的腐蚀速率开展研究,最后基于动电位极化与电化学阻抗技术分析隔水导管的抗腐蚀性能。结果 飞溅区与潮差区的腐蚀程度相比大气区及全浸区更严重,且飞溅区、潮差区及全浸区三个区带的腐蚀产物主要为γ-FeO(OH);180 d时大气区平均腐蚀速率约0.0651~0.0976 mm/a,飞溅区约0.3924~0.4857 mm/a,潮差区约0.3482~0.4281 mm/a,全浸区约0.1714~ 0.2109 mm/a。六种材料容抗弧大小为X80< X70< X65< X60 |
英文摘要: |
The work aims to systematically analyze the corrosion behavior and law of six different kinds of materials at four corrosion zones (atmospheric zone, splash zone, tide zone, and full immersion zone) and in three corrosion cycles (60 d, 90 d, and 180 d) so as to provide theoretical basis for the future material optimization of conductor in the South China Sea. Firstly, indoor immersion tests were carried out to simulate marine corrosion environment, and analyze the corrosion behavior of conductor at atmospheric zone, splash zone, tide zone and full immersion zone respectively by SEM scanning the corrosion coupons. Secondly, the corrosion rate of the six materials at four corrosion zones was studied and finally, the corrosion resistance of the six materials was investigated by potential polarization, and electrochemical impedance techniques. The corrosion forms of coupons were mainly general corrosion. The corrosion degree at the splash zone and the tide zone was more serious than that at the atmospheric zone and the full immersion zone, and the corrosion products of the splash zone, tide zone and full immersion zone were mainly γ-FeO(OH). After testing for 180 d, the corrosion rate at atmospheric zone was 0.0651~0.0976 mm/a, 0.3924~0.4857 mm/a at splash zone, 0.3070~0.3783 mm/a at tide zone, and 0.1714~0.2109 mm/a at full immersion zone. The size relationship of condensance arc of the six materials was X80< X70< X65< X60< X56< X52. From the polarization curves, the higher the degree of steel is, the greater the density of corrosion current and the faster the corrosion rate will be. Under the experimental conditions, the conductor corrosion forms of South China Sea are mainly corrosion and oxygen corrosion, and the conductor coupons of X52 material have a slower corrosion rate and are stronger on corrosion resistance than X80 material. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|