戴丹,林正得,韩钰,祝志祥,陈保安,丁一,张强,王强,吴明亮,舒圣程,耿启,李傲.含石墨烯胞室结构的铜复合材料及其耐腐蚀性能[J].表面技术,2018,47(10):224-230.
DAI Dan,LIN Cheng-de,HAN Yu,ZHU Zhi-xiang,CHEN Bao-an,DING Yi,ZHANG Qiang,WANG Qiang,WU Ming-liang,SHU Sheng-cheng,GENG Qi,LI Ao.Corrosion Resistance Enhancement of Copper Matrix Composites Embedded with Cellular Graphene Framework[J].Surface Technology,2018,47(10):224-230
含石墨烯胞室结构的铜复合材料及其耐腐蚀性能
Corrosion Resistance Enhancement of Copper Matrix Composites Embedded with Cellular Graphene Framework
投稿时间:2018-06-20  修订日期:2018-10-20
DOI:10.16490/j.cnki.issn.1001-3660.2018.10.030
中文关键词:  化学气相沉积  立体胞室结构  石墨烯/铜  导电性  抗刻蚀性能  原位生长
英文关键词:chemical vapor deposition  cellular graphene framework  graphene/copper composites  electrical conductivity  corrosion resistance  in-situ synthesiss
基金项目:国家电网公司科技项目(SGRIDGKJ[2016]795)
作者单位
戴丹 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
林正得 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
韩钰 2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209 
祝志祥 2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209 
陈保安 2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209 
丁一 2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209 
张强 2.全球能源互联网研究院有限公司 先进输电技术国家重点实验室,北京 102209 
王强 3.国网山西省电力公司,太原 030001 
吴明亮 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
舒圣程 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
耿启 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
李傲 1.中国科学院宁波材料技术与工程研究所 a.中国科学院海洋新材料与应用技术重点实验室 b.浙江省海洋与防护重点实验室,浙江 宁波 315201 
AuthorInstitution
DAI Dan 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
LIN Cheng-de 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
HAN Yu 2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 102209, China 
ZHU Zhi-xiang 2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 102209, China 
CHEN Bao-an 2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 102209, China 
DING Yi 2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 102209, China 
ZHANG Qiang 2.State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co., Ltd, Beijing 102209, China 
WANG Qiang 3.State Grid Shanxi Electric Power Company, Taiyuan 030001, China 
WU Ming-liang 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
SHU Sheng-cheng 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
GENG Qi 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
LI Ao 1.a. Key Laboratory of Marine Materials and Related Technologies, b. Zhejiang Key Laboratory of Marine Materials and Pro-tective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 开发一种石墨烯在铜基复合材料中的均匀分散结构,制备出兼具高导电和强抗刻蚀性能的石墨烯/铜复合材料。方法 采用化学气相沉积原位生长法结合分散剂工艺,制备分散均匀石墨烯/铜基粉体复合材料。利用制备的石墨烯/铜粉体材料,采用真空热压工艺,制备了石墨烯/铜块体材料,然后用拉曼光谱、X射线粉末衍射仪和金相显微镜,考察石墨烯/铜试样的质量和形貌,最后用数字便携式涡流电导仪测量其电导率。利用自主设计的石墨烯/铜在过硫酸铵中刻蚀的实验装置,测试石墨烯/铜的抗刻蚀性能。结果 利用石墨烯/铜粉体制备的石墨烯/铜块体和铜具有相同的(111)、(200)和(220)晶面,多层石墨烯以立体胞室结构均匀分布在铜晶粒的晶界处。石墨烯/铜块体的导电率为96%IACS,明显优于文献报道的以其他方法制备的石墨烯/铜块体,并且在过硫酸铵溶液中浸泡90 min后,石墨烯/铜块的质量损失为126.6 mg, 石墨烯/铜比纯铜的抗刻蚀能力提高了37.6%,具有比铜更强的抗刻蚀性能。结论 以CVD原位生长法和真空热压法制 备的石墨烯/铜复合材料,石墨烯以立体胞室结构均匀分散在铜界面处,并且兼具高的导电性和强的抗刻蚀性能。
英文摘要:
      Due to the high electrical conductivity and chemical inertness, graphene has been widely incorporated into the copper matrix to form the reinforced composites. However, graphene is prone to agglomerate. In addition, uniform dispersion between graphene and copper cannot be obtained due to the differences of density. In this study, in order to fabricate high electrical conductivity and superior anticorrosion performance Graphene/copper composites, the rational design of the microstructure of graphene within the matrix is investigated. First, high-quality graphene films were grown on the surface of copper powder by thermal CVD, followed by vacuum hot-pressing to fabricate graphene/copper composites. The composites were characterized by Raman and XRD spectra, and the electrical conductivity was determined by Eddy current tester. The comparison of anticorrosion performance was carried out by measuring the weight loss of the samples as the function of etching time by self designed device. Both Copper and Graphene/Copper samples exhibit typical crystal faces (111), (200), and (220) via XRD. A cellular graphene framework was created at the grain boundary in the composites. The composites exhibit high electrical conductivity of 96%IACS, which is higher than that of reported graphene/copper composites. In addition, our graphene/copper composites also have superior corrosion resistance property against wet corrosion in copper etchant, achieving 37.6% improvement compared to the bare copper. In conclusion, we developed a facile process for the synthesis of copper matrix composites embedded with cellular graphene framework. The obtained composites have a high electrical conductivity and superior anticorrosion performance.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20744510位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号