曹学文,胥锟,彭文山.弯管液固两相流冲蚀失效模拟分析[J].表面技术,2016,45(8):124-131. CAO Xue-wen,XU Kun,PENG Wen-shan.Simulation and Analysis of Liquid-Solid Two-phase Flow Erosion Failure in Pipe Bends[J].Surface Technology,2016,45(8):124-131 |
弯管液固两相流冲蚀失效模拟分析 |
Simulation and Analysis of Liquid-Solid Two-phase Flow Erosion Failure in Pipe Bends |
投稿时间:2016-03-10 修订日期:2016-08-20 |
DOI:10.16490/j.cnki.issn.1001-3660.2016.08.021 |
中文关键词: 液固两相流 弯管 冲蚀 粒径 砂粒流量 |
英文关键词:liquid-solid flow elbow erosion particle size sand flow |
基金项目:国家重点研发计划重点专项(2016YFC0802301) |
作者 | 单位 |
曹学文 | 中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580 |
胥锟 | 中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580 |
彭文山 | 中国石油大学(华东) 储运与建筑工程学院,山东 青岛 266580 |
|
Author | Institution |
CAO Xue-wen | College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China |
XU Kun | College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China |
PENG Wen-shan | College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 分析流体参数、砂粒参数、环境参数对液固两相流弯管冲蚀失效的影响。方法 利用FLUENT模拟弯管冲刷腐蚀,分析流速、粒径、砂粒质量流量、操作压力、重力方向对弯管冲蚀的影响。结果 管内流速从2 m/s增加到10 m/s,最大冲刷腐蚀速率从8.86×10-8 kg/(m2•s)增加到2.45×10-7 kg/(m2•s);颗粒粒径从75 μm增加到200 μm,再增加到550 μm,最大冲蚀速率先从2.04×10-7 kg/(m2•s)减小至1.5×10-7 kg/(m2•s),后增加到2.66×10-7 kg/(m2•s);砂粒流量从0.05 kg/s增加到0.25 kg/s,最大冲蚀速率从8.56×10-8 kg/(m2• s)增加到3.20×10-7 kg/(m2• s);管内操作压力从0.1 MPa增加到0.9 MPa,最大冲蚀速率从1.50×10-7 kg/(m2•s)减少至1.25×10-7 kg/(m2•s);弯头出口由垂直向下位置变化为垂直向上,冲刷腐蚀速率从1.50×10-7 kg/(m2•s)逐渐增加至1.86×10-7 kg/(m2•s)。结论 流速与冲刷腐蚀呈正相关关系;随着砂粒直径的增加,最大冲刷腐蚀速率先减小后增加;在一定范围内,最大冲刷腐蚀速率随着砂粒流量增加而增加;管内操作压力的变化对冲蚀减弱现象影响不明显;出口垂直向上时,冲蚀破坏最严重。 |
英文摘要: |
Objective To analyze the effects of fluid parameters, sand parameters and environment parameters on erosion failure in elbow for liquid-solid two-phase flow. Methods Software FLUENT was used to simulate the elbow erosion-corrosion and analyze the influence of flow velocity, particle diameter, sand mass flow, operating pressure and gravity direction on elbow erosion. Results As the flow velocity increased from 2 m/s to 10 m/s, the maximum erosion rate increased from 8.86×10-8 kg/(m2•s) to 2.45×10-7 kg/(m2•s). As the particle diameter changed from 75 μm to 200 μm and then grew up to 550 μm, the maximum erosion rate first decreased from 2.04×10-7 kg/(m2•s) to 1.5×10-7 kg/(m2•s) and then increased up to 2.66×10-7 kg/(m2•s). As the sand mass flow increased from 0.05 kg/s to 0.25 kg/s, the maximum erosion increased from 8.56×10-8 kg/(m2•s) to 3.20×10-7 kg/(m2•s). As the operation pressure of tube increased from 0.1 MPa to 0.9 MPa, the maximum erosion rate decreased from 1.50×10-7 kg/(m2•s) to 1.25×10-7 kg/(m2•s). As the direction of elbow outlet turned from vertical downward to upward, the erosion rate gradually increased from 1.50×10-7 kg/(m2•s) to 1.86×10-7 kg/(m2•s). Conclusion Velocity and erosion have a positive correlation. As the particle diameter increases, the maximum erosion rate first decreases and then increases. In a certain range, maximum erosion corrosion rate increases as mass flow rises. The change of pressure in the tube is not obviously influential to the erosion weakening. Erosion damage is the most serious when the elbow outlet faces vertical upward. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|