张贝贝,王春霞,吴光辉,胡小萍,林茜.不同活化工艺对电解镍始极片结合力及性能的影响[J].表面技术,2017,46(1):224-228. ZHANG Bei-bei,WANG Chun-xia,WU Guang-hui,HU Xiao-ping,LIN Xi.Influence of Different Activation Processes on Adhesion and Performance of Electrolytic Nickel Starting Sheet[J].Surface Technology,2017,46(1):224-228 |
不同活化工艺对电解镍始极片结合力及性能的影响 |
Influence of Different Activation Processes on Adhesion and Performance of Electrolytic Nickel Starting Sheet |
投稿时间:2016-06-19 修订日期:2017-01-20 |
DOI:10.16490/j.cnki.issn.1001-3660.2017.01.036 |
中文关键词: 活化工艺 结合力 截面形貌 相组成 应力 耐蚀性 |
英文关键词:activation process adhesion section morphology phase composition stress corrosion resistance |
基金项目: |
作者 | 单位 |
张贝贝 | 南昌航空大学 材料科学与工程学院,南昌 330063 |
王春霞 | 南昌航空大学 材料科学与工程学院,南昌 330063 |
吴光辉 | 南昌航空大学 材料科学与工程学院,南昌 330063 |
胡小萍 | 南昌航空大学 材料科学与工程学院,南昌 330063 |
林茜 | 南昌航空大学 材料科学与工程学院,南昌 330063 |
|
Author | Institution |
ZHANG Bei-bei | School of Materials Science and Engineering, Nanchang Aeronautical University, Nanchang 330063, China |
WANG Chun-xia | School of Materials Science and Engineering, Nanchang Aeronautical University, Nanchang 330063, China |
WU Guang-hui | School of Materials Science and Engineering, Nanchang Aeronautical University, Nanchang 330063, China |
HU Xiao-ping | School of Materials Science and Engineering, Nanchang Aeronautical University, Nanchang 330063, China |
LIN Xi | School of Materials Science and Engineering, Nanchang Aeronautical University, Nanchang 330063, China |
|
摘要点击次数: |
全文下载次数: |
中文摘要: |
目的 为了提高电解镍始极片与基体的结合力,增加镀层耐蚀性能,改善镀层质量。方法 通过采用不同的活化工艺对基体进行表面处理后制备镀层,采用划格法测试镀层与基体的结合力,用场发射电子扫描显微镜观察镀层与基体的截面形貌,用X射线衍射仪(XRD)分析镀层的相组成、应力以及镀层晶粒尺寸大小,用电化学工作站研究镀层的耐蚀性能。结果 基体经过活化工艺处理后,镀层与基体结合均匀、致密、完整,大幅提高了镀层与基体的结合力,改善了镀层质量,镀层内应力由287.2 MPa降低到220.0 MPa,并且活化工艺不会给镀层引入其他杂质元素以及改变晶粒尺寸大小。电化学性能测试后发现,经过活化工艺后的镀层耐蚀性能增大,自腐蚀电位由−0.5481 V升高到−0.3980 V;自腐蚀电流密度由9.941 μA/cm2降低到2.927 μA/cm2。结论 钛基体经过活化处理后,生成一层薄的活化膜,这层活化膜通过提高钛基体的表面活性,改变钛基体表面状态,来提高金属电沉积层与钛基体的结合强度,同时镀层的综合性能也得到了改善。 |
英文摘要: |
The work aims to improve the adhesionadhesion between the electrolytic nickel starting sheet and substrate, increase corrosion resistance of the coating and improve the coating quality. The coating was prepared by applying different activation processes to surface of the substrate. The adhesion between the coating and substrate was tested by the grid method. Section morphology of the coating and substrate was observed by using field emission scanning electron microscope. Phase composition, stress and grain size of the coating were analyzed by using X-ray diffractometer (XRD). Corrosion resistance of the coating was tested by using electrochemical workstation. After the substrate was treated by activation process, the coating and substrate were uniformly, compactly and completely adhered. The activation has caused a substantial increase in adhesion of the coating and substrate adhesion and coating quality. Internal stress of the coating layer decreased from 287.2 MPa to 220.0 MPa. In addition, activation process did not introduce other impurity elements to the coating and change grain size. After the electrochemical performance test was performed, corrosion resistance of the coating increased, and self corrosion potential increased from −0.5481 V to −0.3980 V; self corrosion current density decreased from 9.941 μA/cm2 to 2.927 μA/cm2. After activation treatment of titanium substrate, a thin layer of activated film takes form, the activated film improves the adhesion of metal electrodeposited layer and titanium substrate by increasing surface activity and changing surface state of titanium substrate. Moreover, overall performance of the coating is also improved. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|