张伟科.小波变换在薄膜表面图像信号降噪中的应用[J].表面技术,2016,45(5):229-234.
ZHANG Wei-ke.Application of Wavelet Transform in the Signal Noise Reduction of Film Surface Images[J].Surface Technology,2016,45(5):229-234
小波变换在薄膜表面图像信号降噪中的应用
Application of Wavelet Transform in the Signal Noise Reduction of Film Surface Images
投稿时间:2016-03-23  修订日期:2016-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2016.05.036
中文关键词:  小波变换  信号降噪  频谱分析
英文关键词:wavelet transform  signal denoising  spectrum analysis
基金项目:辽宁省科学计划计划项目(2012217005);辽宁省科学事业公益研究基金(2012004002)
作者单位
张伟科 1.沈阳理工大学 理学院,沈阳 110159; 2.沈阳理工大学 信息科学与工程学院,沈阳 110159 
AuthorInstitution
ZHANG Wei-ke 1.School of Science, Shenyang Ligong University, Shenyang 110159, China;2.School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 当前,以原子力显微镜为代表的扫描探针显微镜设备可以获取纳米尺度薄膜样品的表面图像,但这些图像存在不同程度的噪声,影响图像质量和信息判断。为了更准确获取这些薄膜表面状态,需要对薄膜样品表面图像数据和信息进行降噪处理。 方法 结合 AFM 等设备成像特点以及小波变换的时频局域性特点,在介绍小波变换基本理论和噪声来源分析基础上,提出了一种多层小波分解去噪算法。传统的信号理论是建立在傅里叶变换基础上的,而傅里叶变换作为一种全局性的变化,其有一定的局限性,无法同时表述信号在时域和频域的局部性质, 而这些局部特征恰恰是非平稳信号性质最关键的部分。小波变换保留了窗口傅里叶变换局部化的优点,改变了窗口傅里叶变换窗口函数大小固定的缺点。 结果 原始图像信号的频率在 0 Hz 到 4000 Hz 都有分布。通过小波变换后,信号波形更光滑,频谱在 500 Hz 到 2000 Hz 之间分布。 结论 将小波变换应用于薄膜表面图像信号降噪中,通过实验证明通过小波变换可以有效去除信号中的噪声部分。
英文摘要:
      Objective The surface images of nano-scale thin film samples can be obtained by the scanning probe microscope device represented by atomic force microscope, but these images have different degrees of noise, which affect the quality of the image and the judgment of image information. In order to obtain the surface state of the film more accurately, noise reduction of the surface image data and information of the sample is needed. Methods This paper proposed a multi-layer wavelet decomposition noise reduction algorithm based on the introduction of the basic theory of wavelet transform and the analysis of noise sources by combining the imaging characteristics of equipment such as AFM and the time-frequency locality characteristics of wavelet transform. Fourier transform is the basis of the traditional theory of signal, but it has some limitations as a kind of global change. Fourier transform fails to simultaneously describe the local characteristics of the time domain and the frequency domain, which are the key parts of unstable signal characteristics. The wavelet transform kept the advantage of window Fourier transforms in localization and changed its defect of fixed size. Results The frequency of the original image signal was distributed in the range of 0~4000 Hz. After the wavelet transform, the signal waveform was more smooth, and the frequency spectrum was distributed between 500 Hz and 2000 Hz. Conclusion The wavelet transform was applied to signal noise reduction of the film surface images, and the experiment proved that the noise could be effectively removed using wavelet transform.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20721084位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号