田永芹,常炜,胡丽华,贾旭,周晓红,邢云颖,余晓毅,于湉.API X65、 316L 不锈钢及 Inconel 625 间电偶腐蚀风险研究[J].表面技术,2016,45(5):128-134.
TIAN Yong-qin,CHANG Wei,HU Li-hua,JIA Xu,ZHOU Xiao-hong,XING Yun-ying,YU Xiao-yi,YU Tian.Risk of Galvanic Corrosion among API X65, 316L and Inconel 625[J].Surface Technology,2016,45(5):128-134
API X65、 316L 不锈钢及 Inconel 625 间电偶腐蚀风险研究
Risk of Galvanic Corrosion among API X65, 316L and Inconel 625
投稿时间:2016-01-16  修订日期:2016-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2016.05.020
中文关键词:  316L  API X65  inconel625  电偶腐蚀  电化学测试  模拟试验
英文关键词:316L  API X65  inconel625  galvanic corrosion  electrochemical corrosion test  simulation experiment
基金项目:
作者单位
田永芹 中海油研究总院, 北京 100029 
常炜 中海油研究总院, 北京 100029 
胡丽华 中海油研究总院, 北京 100029 
贾旭 中海油研究总院, 北京 100029 
周晓红 中海油研究总院, 北京 100029 
邢云颖 安科工程技术研究院(北京)有限公司, 北京 100083 
余晓毅 中海油研究总院, 北京 100029 
于湉 中海油研究总院, 北京 100029 
AuthorInstitution
TIAN Yong-qin CNOOC Research Institute, Beijing 100029, China 
CHANG Wei CNOOC Research Institute, Beijing 100029, China 
HU Li-hua CNOOC Research Institute, Beijing 100029, China 
JIA Xu CNOOC Research Institute, Beijing 100029, China 
ZHOU Xiao-hong CNOOC Research Institute, Beijing 100029, China 
XING Yun-ying Safetech Research Institute, Beijing 100083, China 
YU Xiao-yi CNOOC Research Institute, Beijing 100029, China 
YU Tian CNOOC Research Institute, Beijing 100029, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 确定 API X65、 316L 不锈钢及 inconel625 相互偶接后的电偶腐蚀风险。 方法 采用电化学测试、标准电偶腐蚀评价实验和腐蚀模拟实验对电偶腐蚀进行分析研究。 结果 在模拟地层水中,经过电化学测试, X65 的自腐蚀电位在-0.75 V 左右, 316L 和 625 的电位在-0.35 V 左右。对于标准电偶腐蚀评价实验,敞口溶液及 CO2 分压分别为 100 kPa 和 500 kPa 的溶液中, X65 与 316L 之间的电偶电流最大,其次是 X65 与 625, 316L 和 625 之间的电偶电流最小,几乎为零。通过电偶腐蚀模拟试验可知, X65 与316L 或 625 偶接,都发生了明显的电偶腐蚀,而且 X65 侧靠近焊接接头位置发生了严重的沟槽腐蚀,未偶接异金属时 X65 的平均腐蚀速率为 1.24 mm/a,异金属接触导致的电偶腐蚀使 X65 的腐蚀速率增加,X65 与 316L 偶接后的平均腐蚀速率为 1.49 mm/a, X65 与 625 偶接后的平均腐蚀速率为 1.75 mm/a。 X65与 316L 偶接后的局部腐蚀速率最大为 16.8 mm/a, X65 与 625 偶接后的局部腐蚀速率高达 26.4 mm/a,由于电偶腐蚀导致的局部腐蚀速率要比 X65 的自腐蚀速率超出十几倍。 X65 与 316L 偶接的电偶腐蚀的速率要比 X65 和 625 偶接的大, 316L 和 625 间几乎没有电偶腐蚀发生。 结论 X65、 316L 和 625 间偶接的电偶腐蚀风险大于 X65 与 316L 的, 316L 和 625 间偶接的电偶腐蚀风险较小。
英文摘要:
      Objective To determine the galvanic corrosion risk among API X65, 316L and inconel 625. Methods Electrochemical corrosion test, standard galvanic corrosion evaluation experiment and simulation experiment were carried out to analyze the corrosion risk. Results The corrosion potential of X65 was around -0.75 V, while that of 316L and 625 potential was both around -0.35 V. For standard galvanic corrosion evaluation experiment, in the open solution or 100 kPa and 500 kPa CO2 solution, the galvanic current of X65-316L was the largest, followed by X65-625 and then 316L-625. Galvanic corrosion occurred when X65 met either 316L or 625. For simulation experiment, obvious galvanic corrosion occurred among X65, 316L and 625. There was a serious groove corrosion near the weld joint position in X65. The corrosion rate of X65 without galvanic corrosion was 1.24 mm/a. The galvanic corrosion increased this value. The average galvanic corrosion rate of X65-316L was 1.49 mm/a and that of X65-625 was 1.75 mm/a. The local galvanic corrosion rate of X65-316L was 16.8 mm/a and that of X65-625 was 26.4 mm/a, which was over ten times as high as the corrosion rate of X65 without galvanic corrosion. The galvanic corrosion rate of X65 and 316L was larger than that of X65 and 625. There was almost no galvanic corrosion between 316L stainless steel and 625 nickel base alloy. Conclusion Galvanic corrosion risk between X65 and 316L was larger than that between X65 and 625. Galvanic corrosion risk between 316L and 625 was very small.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20720945位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号