刘景超,刘超,王晓.压裂管柱中陶粒对滑套球座影响[J].表面技术,2016,45(5):118-122.
LIU Jing-chao,LIU Chao,WANG Xiao.Influence of Sand in Fracturing String on Sleeve Tee[J].Surface Technology,2016,45(5):118-122
压裂管柱中陶粒对滑套球座影响
Influence of Sand in Fracturing String on Sleeve Tee
投稿时间:2016-01-23  修订日期:2016-05-20
DOI:10.16490/j.cnki.issn.1001-3660.2016.05.018
中文关键词:  陶粒  滑套球座  LS-DYNA  涂层  表面应力  破坏
英文关键词:sand  sleeve tee  LS-DYNA  coating  surface stress  damage
基金项目:
作者单位
刘景超 中海油能源发展股份有限公司工程技术分公司,天津 300452 
刘超 中海油能源发展股份有限公司工程技术分公司,天津 300452 
王晓 中海油能源发展股份有限公司工程技术分公司,天津 300452 
AuthorInstitution
LIU Jing-chao Engineering Technology Company, CNOOC Energy Technology & Services Limited, Tianjin 300452, China 
LIU Chao Engineering Technology Company, CNOOC Energy Technology & Services Limited, Tianjin 300452, China 
WANG Xiao Engineering Technology Company, CNOOC Energy Technology & Services Limited, Tianjin 300452, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 防止陶粒对滑套球座产生破坏。 方法 利用有限元软件 LS-DYNA 对陶粒冲击滑套球座进行建模,分别改变陶粒与滑套球座表面涂层之间的摩擦系数、滑套球座涂层的厚度、陶粒的粒径、陶粒的速度和陶粒速度相对于滑套球座表面的角度,通过仿真结果观察参数变化对滑套球座表面应力的影响。 结果 随着陶粒和球座之间的静摩擦系数由 0.1 增加到 0.4,球座的最大表面应力由 1.67 GPa增加到 2.33 GPa。随着球座表面涂层厚度由 3 μm 增大到 6 μm,球座的最大表面应力由 2.05 GPa 减小到 0.89 GPa。随着陶粒粒径由 50 μm 增加到 80 μm,球座的最大表面应力由 1.67 GPa 增加到 3.63 GPa。随着陶粒速度由 24 m/s 增加到 96 m/s,球座的最大表面应力由 0.96 GPa 增加到 2.42 GPa。随着陶粒和球座表面之间的夹角由 15°增加到 60°,球座的最大表面应力由 1.67 GPa 增加到 4.12 GPa。 结论 压裂液的性能会影响陶粒和球座之间的摩擦系数,进而影响球座的表面应力大小。球座的表面涂层厚度适当增大可以降低其表面的最大应力,压裂液中陶粒的直径越大,单个陶粒对球座造成的冲击应力越大。可以通过设计使滑套球座表面与中心线的夹角尽量小,以减小球座的最大表面应力。施工排量的增大会加剧球座的破坏。
英文摘要:
      Objective To prevent damage of sleeve tee caused by sand. Methods Using the finite element software LS-DYNA, the impact of sand on sleeve tee was modeled. By changing the coefficient of friction between the ball seat surface and sand, the thickness of the coating, the diameter of sand, the speed of sand, the angle between sand velocity and sleeve tee surface, the effects of parameter changes on sleeve tee surface stress were observed by simulation results. Results With the static coefficient of friction between the sand and the ball seat increasing from 0.1 to 0.4, the maximum surface stress on ball seat increased from 1.67 GPa to 2.33 GPa. With the coating thickness on the ball seat surface increasing from 3 μm to 6 μm, the maximum surface stress ball seat decreased from 2.05 GPa to 0.89 GPa. As the diameter of sand increased from 50 μm to 80 μm, the largest surface stress on the ball seat increased from 1.67 GPa to 3.63 GPa. With the sand speed increasing from 24 m/s to 96 m/s, the maximum surface stress on ball seat increased from 0.96 GPa to 2.42 GPa. With the angle between the sand speed and ball seat surface increasing from 15° to 60° , the maximum surface stress on ball seat increased from 1.67 GPa to 4.12 GPa. Conclusion Performance of fracturing fluid affected the coefficient of friction between the sand and the ball seat, thereby affecting the tee surface stress magnitude; appropriately increasing the surface coating thickness of tee could reduce its maximum stress. The larger the diameter of sand, the greater the stress on the ball seat. The sleeve could be designed to make the angle between the surface and the center line of the ball seat as small as possible to reduce the maximum surface stress on ball seat. Increased construction could exacerbates the destruction of tee.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20751149位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号