王传彬,李秀一,徐志刚,彭健,夏禹,张颖,沈强.服役于海洋环境的金属管道防护涂层研究进展[J].表面技术,2023,52(12):225-248.
WANG Chuan-bin,LI Xiu-yi,XU Zhi-gang,PENG Jian,XIA Yu,ZHANG Yin,SHEN Qiang.Review on the Progress of the Metal Pipeline Protective Coating Serving in Marine Environment[J].Surface Technology,2023,52(12):225-248
服役于海洋环境的金属管道防护涂层研究进展
Review on the Progress of the Metal Pipeline Protective Coating Serving in Marine Environment
投稿时间:2023-09-28  修订日期:2023-11-07
DOI:10.16490/j.cnki.issn.1001-3660.2023.12.020
中文关键词:  海洋环境  管道防护  防护涂层  耐腐蚀  耐磨损
英文关键词:marine environment  pipeline protection  protective coating  corrosion resistance  wear resistance
基金项目:广东省基础与应用基础研究重大项目(2021B0301030001);国家大学生创新创业训练计划项目(S202210497024)
作者单位
王传彬 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
李秀一 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
徐志刚 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
彭健 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
夏禹 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
张颖 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;大阪大学 产业科学研究所,大阪 567-0047,日本 
沈强 化学与精细化工广东省实验室潮州分中心,广东 潮州 521011;武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院 c.现代汽车零部件技术湖北省重点实验室,武汉 430070 
AuthorInstitution
WANG Chuan-bin Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
LI Xiu-yi Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
XU Zhi-gang Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
PENG Jian Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
XIA Yu Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
ZHANG Yin Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;The Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan 
SHEN Qiang Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong Chaozhou 521011, China;a.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b.International School of Materials Science and Engineering, Wuhan University of Technology c.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
摘要点击次数:
全文下载次数:
中文摘要:
      金属管道是实现气、油、矿等海洋资源连续、快速运输的重要载体。在复杂严酷的海洋环境中,金属管道的内、外壁要同时承受海水环境和运输物质带来的化学腐蚀与物理摩擦耦合工况,极易发生由腐蚀与磨损导致的管道破坏和失效。对金属管道进行表面涂层改性与强化处理是提升其使役性能最直接有效的方法。为此,综述了海洋环境和运输介质对金属管道的腐蚀磨损行为,并按照涂层的物质种类(金属涂层、陶瓷涂层和高分子涂层),介绍了常见的海洋金属管道防护涂层研究现状,全面总结对比了不同防护涂层材料的微观结构、力学性能、耐腐蚀性能、耐磨损性能及其腐蚀作用机理,以期为涂层新材料及新结构的创新设计与性能优化提供有益借鉴。在此基础上,对未来海洋金属管道防护涂层材料的发展趋势及其组分结构的研究方向进行了展望,以求为海洋金属管道防腐领域的研究提供一定的参考与支撑。
英文摘要:
      Metal pipeline is an important carrier for continuous and rapid transportation of marine resources such as gas, oil and ore. In the complex and harsh marine environment, the inner and outer walls of the metal pipeline have to withstand the coupling operating conditions of chemical corrosion and physical friction brought by the seawater environment and substances transported, leading to the damage and failure of the pipeline. This seriously shortens the service life of the metal pipeline in the marine environment. Surface coating for the metal pipeline is a direct and effective treatment to modify and strengthen the workpiece, and therefore support it work safely and stably with extended service life. Thus, the development of high-performance protective coatings for metal pipeline adapted to the harsh marine service environment has both significant economic and social values.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20661005位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号