唐柏林,陈修,杨波,孟野,顾亦诚,陆羽,史晓斌,张世宏,宋广生.氢分离非钯合金膜表面处理研究进展[J].表面技术,2023,52(7):80-91, 230.
TANG Bo-lin,CHEN Xiu,YANG Bo,MENG Ye,GU Yi-cheng,LU Yu,SHI Xiao-bin,ZHANG Shi-hong,SONG Guang-sheng.Research Progress on Surface Treatment of Non-palladium Alloy Membranes for Hydrogen Separation[J].Surface Technology,2023,52(7):80-91, 230
氢分离非钯合金膜表面处理研究进展
Research Progress on Surface Treatment of Non-palladium Alloy Membranes for Hydrogen Separation
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.07.006
中文关键词:  氢分离  表面处理  非Pd催化材料  中间层  复合膜  金属膜
英文关键词:hydrogen separation  surface treatment  non-Pd catalytic materials  intermediate layer  composite membrane  alloy membrane
基金项目:国家自然科学基金(51875002)
作者单位
唐柏林 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
陈修 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
杨波 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
孟野 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
顾亦诚 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
陆羽 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
史晓斌 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
张世宏 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
宋广生 安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 材料科学与工程学院 数理科学与工程学院,安徽 马鞍山,243032 
AuthorInstitution
TANG Bo-lin Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
CHEN Xiu Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
YANG Bo Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
MENG Ye Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
GU Yi-cheng Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
LU Yu Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
SHI Xiao-bin Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
ZHANG Shi-hong Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
SONG Guang-sheng Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education,School of Materials Science and Engineering, School of Mathematics and Physics, Anhui University of Technology, Anhui Maanshan 243032, China 
摘要点击次数:
全文下载次数:
中文摘要:
      镀有Pd层的氢分离纯化用5B族金属膜具有较高的氢选择性和渗透率,但Pd与基底在高温下易发生热扩散,致使氢的解离效率变差,影响合金膜在氢分离时的连续性和稳定性。目前,在合金膜与Pd之间添加中间层或在合金膜表面直接使用非Pd催化材料是防止氢分离合金膜因金属间扩散而失效的主要方法。介绍了金属催化氢解离与合金膜渗氢机理,并从中间层材料、非Pd催化材料及影响这2种材料效果的内外因素等方面综述了近年来在氢分离合金膜表面处理方面的研究进展。中间层材料的类型以金属化合物为主,还包括氧化物及稀土金属Y,针对这些材料防金属间扩散的效果采用高温下渗氢稳定时间和渗透率进行评价分析;非Pd催化材料主要分为金属碳化物和钒氧化物2类,重点分析了材料的解离效率和通用性,其解离效率与晶体结构和实验温度有关。在通用性方面,氧化物能够与不同基底合金结合,并获得较高的氢渗透率,表现出更好的适应性。影响中间层和非Pd催化材料发挥效用的因素主要包括材料内在因素和工艺外部因素,分析了涂层结构和厚度的材料因素,举例说明了制备工艺和制备参数选择等外部因素对材料发挥效用的影响。最后指出了现有涂层研究中,加入中间层材料或直接使用非Pd催化材料时的不足及相应的改进措施,并对氢分离5B族合金膜表面处理的未来发展进行了展望。
英文摘要:
      The group 5B metals used for hydrogen separation and purification have high hydrogen selectivity and permeability, but these metals lack the ability of dissociating hydrogen into hydrogen atoms. Therefore, metal Pd that can catalyze hydrogen dissociation needs to be plated on the surface of these membranes to achieve the purpose of Pd-assisted dissociation of hydrogen into hydrogen atoms. However, Pd and 5B base alloy membranes are prone to intermetallic interdiffusion at high temperature, which deteriorates the hydrogen dissociation efficiency on the membrane surface and affects the continuity and stability during hydrogen separation. Adding an intermediate layer between hydrogen separation alloy membrane and Pd layer or directly using a non-Pd catalytic material on the surface of the alloy membrane is the main method to prevent the failure of the hydrogen separation alloy membrane due to intermetallic interdiffusion. Catalytic hydrogen dissociation mechanism of Pd and other metals were briefly introduced together with hydrogen transport mechanism of hydrogen separation alloy membrane. The research progress on surface treatment of hydrogen separation alloy membranes reported in recent years was reviewed from the following three aspects:1) intermediate layer materials and its function as a barrier against thermal diffusion between metals; 2) non-Pd catalytic materials and their catalytic effects on hydrogen dissociation; and 3) the effects of internal and external factors on the effectiveness of materials. The types of intermediate layer materials to prevent high-temperature intermetallic diffusion were mainly intermetallic compounds, and also included some oxides (the oxides were obtained from group 5B metal substrates) and rare earth metal Y. The effect of these intermediate layer materials to prevent thermal diffusion between metals was evaluated and analyzed in terms of hydrogen permeation stability time and hydrogen permeability at high temperature. The non-Pd catalyzed hydrogen dissociation materials were mainly divided into metal carbides and vanadium oxides. The hydrogen dissociation efficiency and compatibility of these materials were emphatically analyzed. The dissociation efficiency of non-Pd catalytic materials for hydrogen was related to the crystal structure and experimental temperature. Non-palladium-catalyzed materials did not appear metal thermal diffusion, so they could work at temperature higher than 400 ℃. High temperature also helped increase hydrogen permeability. In terms of compatibility, vanadium oxides showed better adaptability because they could be stably combined with different alloy membranes and obtained higher hydrogen permeability. The factors that affected the effect of the interlayer and the non-Pd catalytic materials to prevent metal thermal diffusion or catalyze hydrogen dissociation mainly included the internal factors like material and the external factors like process. The effects of the internal factors of these materials, such as coating structure and thickness were analyzed. The effects of external factors such as the preparation process and the selection of preparation parameters on the anti diffusion or catalytic hydrogen dissociation effect were illustrated with examples. Finally, the shortcomings and corresponding improvement measures of adding interlayer materials or using non-Pd catalytic materials in the existing research were pointed out, and the future surface treatment development was prospected for hydrogen separation 5B group alloy membranes.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20656425位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号