李刚,付政伟,宋艳东,马宗义,刘子童,冯礼志,冯思雨.p–GaN/ZnO纳米线/ZnO薄膜三明治异质结紫外光电探测器光电性能[J].表面技术,2023,52(6):384-391.
LI Gang,FU Zheng-wei,SONG Yan-dong,MA Zong-yi,LIU Zi-tong,FENG Li-zhi,FENG Si-yu.Photoelectric Properties of p-GaN/ZnO Nanowires/ZnO Thin Film Sandwich Heterojunction Ultraviolet Photodetector[J].Surface Technology,2023,52(6):384-391
p–GaN/ZnO纳米线/ZnO薄膜三明治异质结紫外光电探测器光电性能
Photoelectric Properties of p-GaN/ZnO Nanowires/ZnO Thin Film Sandwich Heterojunction Ultraviolet Photodetector
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.06.035
中文关键词:  异质结  光电探测器  CVD  响应度  比探测率  外量子效率
英文关键词:heterojunction  photodetector  CVD  responsivity  specific detectivity  external quantum efficiency
基金项目:辽宁省教育厅科技研究项目(LJKZ1195);营口理工学院创新团队支持计划(TD202001);营口理工学院高层次人才科研启动项目(YJRC202014)
作者单位
李刚 辽宁工程技术大学 材料科学与工程学院,辽宁 阜新 123000;营口理工学院 材料科学与工程学院,辽宁 营口 115000 
付政伟 辽宁工程技术大学 材料科学与工程学院,辽宁 阜新 123000;中国科学院金属研究所,沈阳 110000 
宋艳东 辽宁工程技术大学 材料科学与工程学院,辽宁 阜新 123000;中国科学院金属研究所,沈阳 110000 
马宗义 中国科学院金属研究所,沈阳 110000 
刘子童 中国科学院金属研究所,沈阳 110000 
冯礼志 中国科学院金属研究所,沈阳 110000 
冯思雨 中国科学院金属研究所,沈阳 110000 
AuthorInstitution
LI Gang School of Materials Science and Engineering, Liaoning Technical University, Liaoning Fuxin 123000, China;School of Materials Science and Engineering, Yingkou Institute of Technology, Liaoning Yingkou 115000, China 
FU Zheng-wei School of Materials Science and Engineering, Liaoning Technical University, Liaoning Fuxin 123000, China;Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
SONG Yan-dong School of Materials Science and Engineering, Liaoning Technical University, Liaoning Fuxin 123000, China;Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
MA Zong-yi Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
LIU Zi-tong Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
FENG Li-zhi Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
FENG Si-yu Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过设计一种新型p–GaN/ZnO(薄膜+纳米线)三明治异质结结构,提高ZnO对紫外光的响应。方法 利用化学气相沉积(CVD)方法,在蓝宝石/GaN衬底上生长出纳米线+薄膜交错排列的ZnO,得到具有三明治结构的p–GaN/ZnO材料。通过旋涂Ag纳米线(NWS)、滴银胶为电极,制备三明治结构的异质结紫外(UV)光电探测器。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)表征物相及形貌;利用光致发光(PL)和拉曼(Raman)光谱分析晶体结晶情况;利用半导体分析测试仪对该三明治异质结UV光电探测器进行光电性能测试,得到其光电性能变化规律。结果 该三明治结构光电探测器顶部为ZnO薄膜,中间为ZnO NWS与纳米片交错排列分布,底部为GaN。这种二维(2D)/一维(1D)/2D结构使入射光在结构内多次反射和散射,提高了光程长度,进而提高了光吸收。另外,由于p–GaN和n–ZnO形成PN结,在内建电场作用下,可以有效提高光生电子–空穴分离效率。光电性能测试结果表明,在偏压2 V、光功率密度520 μW/cm2(365 nm)条件下,响应度(R)为35.8 A/W,上升时间(tr)为41.83 ms,下降时间(td)为43.21 ms,外量子效率(Eq)为122%,比探测率(D*)为1.31×1012 cm.Hz1/2.W−1。结论 通过一步CVD法制备新型p–GaN/ZnO纳米线/ZnO薄膜三明治结构UV光电探测器,可以有效提高ZnO对紫外光的响应,为探索新式结构光电探测器提供可能。
英文摘要:
      The photodetector is a device that converts an optical signal into an electrical one. In our daily life, high-performance photodetectors play an important role in many fields, including photoelectric display, imaging, environmental monitoring, optical communication, military, security inspection, and etc. It is a critical component in the modern miniaturized electronic industry. The work aims to design a novel p-GaN/ZnO (thin film+nanowire) sandwich heterojunction structure to improve the response of ZnO to ultraviolet light. The sandwich structure of ZnO nanowire (NWS) and nanosheet was grown by chemical vapor deposition (CVD) in a single-temperature zone high-temperature tubular furnace, and its growth temperature was 1 050 ℃, holding time was 25 min, and with 30 mL/min argon protection. First of all, spin Ag NWS on the surface of ZnO thin film with the spin-coating method uniformly. Secondly, dilute hydrochloric acid was used to erase the ZnO structure on the GaN substrate as the attachment point of the silver glue. At the same time, a drop of silver gel on the Ag NWS was used as another attachment point, then the process of UV photodetector based on p-GaN/ZnO heterojunction was completed. The advantage of the electrode preparation process of this device was that it could avoid tedious steps such as light carvings. X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to characterize the phase and morphology and the law of photoelectric performance. The changes of sandwich heterojunction UV photodetector were tested with a semiconductor analyzer. The results indicated that the sandwich structure sample was interlaced with ZnO NWS and ZnO nanosheets inside, and its surface was ZnO thin film and relatively smooth. ZnO was single crystal with good crystal quality. The photodetector had obvious rectifier characteristics, at 2 V bias voltage, 520 μW/cm2 optical power density (365 nm), the responsivity (R) was 35.8 A/W, the rise time (tr) was 41.83 ms, the descending time (td) was 43.21 ms, the external quantum efficiency (Eq) was 122%, and the specific detection rate (D) was 1.31×1012 cm.Hz1/2.W−1. The optical response enhancement mechanism of this experiment was:under the condition of 365 nm ultraviolet light, on the one hand, part of the light would be absorbed by the top ZnO film, and some light would enter the ZnO nano-sliced and ZnO NWS area through the ZnO film. In this field, reflection, scattering, and absorption occurred repeatedly. On the other hand, although a large part of the light was reflected and absorbed by ZnO, it still reached GaN at the bottom. Therefore, the incident light will reflect and absorb multiple times within the entire sandwich structure, which means the length of the light will be longer, and enhance the absorption of the materials for the light, resulting in the density of pairs of electrons and holes inside ZnO and GaN materials increased significantly. Under the influence of the construction of the electric field, the separation efficiency of pairs of electrons and holes is enhanced a lot, and Ag electrodes increase the efficiency of electrons and enhance light response.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20654735位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号