石昌帅,王澳,祝效华,万孝峰,柴国栋,李波.碳钢–橡胶硫化黏接拉伸力学行为与黏接失效机理[J].表面技术,2023,52(4):417-426.
SHI Chang-shuai,WANG Ao,ZHU Xiao-hua,WAN Xiao-feng,CHAI Guo-dong,LI Bo.Tensile Mechanical Behavior and Bonding Failure Mechanism of Carbon Steel-rubber Vulcanizing Bonding[J].Surface Technology,2023,52(4):417-426
碳钢–橡胶硫化黏接拉伸力学行为与黏接失效机理
Tensile Mechanical Behavior and Bonding Failure Mechanism of Carbon Steel-rubber Vulcanizing Bonding
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.04.038
中文关键词:  硫化黏接  内聚力模型  黏接失效  拉伸失效  橡胶  数值模拟
英文关键词:vulcanizing bonding  cohesive zone model  bonding failure  tensile failure  rubber  numerical simulation
基金项目:国家自然科学基金(52174210, 52034006);成都国际科技合作项目(2019?GH02?00034?HZ);南充市学校科技战略合作应用基础研究项目(SXHZ049)
作者单位
石昌帅 西南石油大学 机电工程学院,成都 610500 
王澳 西南石油大学 机电工程学院,成都 610500 
祝效华 西南石油大学 机电工程学院,成都 610500 
万孝峰 中国石油集团济柴动力有限公司成都压缩机分公司,成都 610100 
柴国栋 西南石油大学 工程学院,四川 南充 637001 
李波 西南石油大学 工程学院,四川 南充 637001 
AuthorInstitution
SHI Chang-shuai School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
WANG Ao School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
ZHU Xiao-hua School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
WAN Xiao-feng CNPC Jichai Power Company Limited Chengdu Compressor Branch, Chengdu 610100, China 
CHAI Guo-dong School of Engineering, Southwest Petroleum University, Sichuan Nanchong 637001, China 
LI Bo School of Engineering, Southwest Petroleum University, Sichuan Nanchong 637001, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究碳钢−橡胶黏接结构件的拉伸力学行为和黏接失效机理,同时获得黏接工艺参数对碳钢−橡胶黏接界面质量的影响规律。方法 引入内聚力模型来描述黏接界面的黏接失效过程,通过黏接结构件界面力学性能实验拟合,获得内聚力参数,建立碳钢−橡胶黏接三维拉伸数值模型,从拉伸应力、剥离应力、损伤因子和刚度弱化的角度分析碳钢−橡胶在拉伸载荷作用下的黏接失效行为,研究刚度、初始损伤强度和断裂能对碳钢−橡胶黏接界面力学性能的影响规律。结果 在实验得到的内聚力参数下,碳钢−橡胶黏接界面中部最大拉伸应力比边缘增大了0.42 MPa,黏接界面边缘的最大剥离应力比最大拉伸应力增大了0.77 MPa。在拉伸位移为1.35 mm时,黏接界面中部最先进入损伤演化。当拉伸位移增至1.8 mm时,黏接界面边缘进入损伤演化,黏接界面中部完全失效,刚度的减小使得黏接界面的抗拉伸能力增强,刚度越小黏接界面的抗拉伸能力增强效果越明显。初始损伤强度小于3.42 MPa,黏接界面损伤演化速度明显较慢,在较大拉伸位移下才会发生黏接失效。不同断裂能的黏接界面进入损伤演化时的拉伸位移一致,断裂能越大的黏接界面损伤演化至完全失效的速度越慢。结论 碳钢−橡胶黏接界面中部的最大拉伸应力较大,最大剥离应力较小,黏接界面中部最先发生黏接失效。减小碳钢−橡胶黏接界面的刚度,提高初始损伤强度和断裂能可以有效预防黏接失效。不同内聚力参数的碳钢−橡胶黏接界面发生初始黏接失效的位置和范围具有随机性,但黏接失效均从黏接界面中部扩散至边缘。
英文摘要:
      The work aims to research the tensile mechanical behavior and bonding failure mechanism of carbon steel-rubber bonding structural parts and to obtain the effects of bonding process parameters on the quality of carbon steel-rubber bonding interfaces. The cohesive zone model was introduced to describe the bonding failure process of bonding interface. The cohesive parameters were obtained based on the experimental fitting of interfacial mechanical properties of bonding structural parts. A three-dimensional tensile numerical model of carbon steel-rubber bonding was established. The bonding failure behavior of carbon steel-rubber under tensile load was analyzed from the perspectives of tensile stress, peel stress, damage factor and stiffness weakening. The effects of stiffness, initial damage strength and fracture energy on mechanical properties of carbon steel-rubber bonding interface were studied. Under the cohesive parameters obtained from the experiment. The maximum tensile stress in the middle of carbon steel-rubber bonding interface was 0.42 MPa larger than that in the edge, and the maximum peel stress at the edge of the bonding interface was 0.77 MPa greater than the maximum tensile stress. When the tensile displacement was 1.35 mm, the middle of the bonding interface first entered damage evolution. When the tensile displacement increased to 1.8 mm, the edge of the bonding interface entered damage evolution, and the middle of the bonding interface was completely failed. The tensile strength of the bonding interface increased with the decrease of the stiffness. The tensile strength of the adhesive interface increased with the decrease of the stiffness. The smaller the stiffness, the more obvious the tensile resistance of the bonding interface. When the initial damage strength was less than 3.42 MPa, the damage evolution rate of bonding interface was obviously slow, and the bonding failure occurred under large tensile displacement. The tensile displacements of the bonding interfaces with different fracture energy were the same when the bonding interfaces entered into damage evolution, and the larger the fracture energy, the slower the damage of the bonding interface evolved to complete failure. The results show that, the larger the maximum tensile stress in the middle of carbon steel-rubber bonding interface, and the smaller the maximum peel stress. The bonding failure occurs first in the middle of the bonding interface. The carbon steel-rubber bonding interface enters the damage evolution stage, resulting in the decrease of bonding force and tensile stress. As long as the carbon steel-rubber bonding interface entered damage evolution, it will rapidly evolve to complete failure. The larger the tensile displacement, the greater the trend of rubber edge shrinkage to the middle, and the greater the elastic deformation energy. Once the bonding failure occurs, the bonding interface will quickly spread from the middle to the edge and the area where bonding failure occurs is large. Reducing the stiffness of carbon steel-rubber bonding interface, increasing initial damage strength and fracture energy can effectively prevent bonding failure. The location and range of initial bonding failure at the carbon steel-rubber bonding interface with different cohesion parameters are random, but the bonding failure spreads from the middle of the bonding interface to the edge. The results can provide a theoretical basis for the vulcanizing bonding process of carbon steel - rubber.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20384074位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号