于晓彤,蔡磊,陈浩,薄林,刘成宝,崔蓝月,曾荣昌.镁合金表面谷氨酸、丙氨酸、天冬氨酸诱导Ca–P涂层耐蚀性能比较[J].表面技术,2023,52(4):210-222.
YU Xiao-tong,CAI Lei,CHEN Hao,BO Lin,LIU Cheng-bao,CUI Lan-yue,ZENG Rong-chang.Comparison of Corrosion Resistance of Glutamic Acid, Alanine and Aspartic Acid-induced Ca-P Coatings on Magnesium Alloy[J].Surface Technology,2023,52(4):210-222
镁合金表面谷氨酸、丙氨酸、天冬氨酸诱导Ca–P涂层耐蚀性能比较
Comparison of Corrosion Resistance of Glutamic Acid, Alanine and Aspartic Acid-induced Ca-P Coatings on Magnesium Alloy
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.04.018
中文关键词:  镁合金  涂层  氨基酸  耐蚀性能  生物材料  降解  生物矿化
英文关键词:magnesium alloy  coating  amino acid  corrosion resistance  biomaterial  degradation  biomineralization
基金项目:国家自然科学基金(52071191)
作者单位
于晓彤 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
蔡磊 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
陈浩 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
薄林 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
刘成宝 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
崔蓝月 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590 
曾荣昌 山东科技大学 材料科学与工程学院 轻合金腐蚀实验室,山东 青岛 266590;现代汽车零部件技术湖北省重点实验室,武汉 430070 
AuthorInstitution
YU Xiao-tong Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
CAI Lei Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
CHEN Hao Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
BO Lin Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
LIU Cheng-bao Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
CUI Lan-yue Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China 
ZENG Rong-chang Corrosion Laboratory for Light Metals, School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China;Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan 430070, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 细化Ca–P涂层晶粒,提高其致密性、耐蚀性,得到氨基酸等电点(Isoelectric point,pI)的作用及生物矿化机制。方法 选取谷氨酸、丙氨酸、天冬氨酸,通过60 ℃水浴,在AZ31镁合金表面制备无氨基酸和3种氨基酸Ca–P 涂层,即丙氨酸Ca–P涂层(Ca–PAla)、谷氨酸Ca–P涂层(Ca–PGlu)、天冬氨酸Ca–P涂层(Ca–PAsp)。采用高分辨扫描电子显微镜(SEM)、X射线衍射仪(XRD)和傅里叶红外光谱仪(FTIR)对涂层的微观形貌及成分进行表征分析;通过电化学极化、交流阻抗(EIS)及析氢实验探究涂层在Hank's人体模拟体液中的耐蚀性能。结果 Ca–P、Ca–PAla、Ca–PGlu、Ca–PAsp涂层的厚度分别为(8.46±0.43)、(14.39± 0.96)、(8.48±0.16)、(10.07±0.94)μm。涂层的主要组成物相为透钙磷灰石(CaHPO4.2H2O,DCPD)、羟基磷灰石(HA)、缺钙羟基磷灰石(CDHA)。电化学和析氢实验结果表明,氨基酸提高了镁合金Ca–P涂层的耐蚀性。根据自腐蚀电流密度Jcorr的大小,样品可按以下顺序排列,镁合金AZ31 (1.47 × 10–4 A/cm2) > Ca–P (4.03 × 10–6 A/cm2) > Ca–PGlu(2.71× 10–6 A/cm2)> Ca–PASP(8.10× 10–7 A/cm2)> Ca–PAla(3.70× 10–7 A/cm2)。结论 在3种氨基酸中,丙氨酸促进成核过程最明显、涂层最厚,且耐蚀性最好。最后,讨论了镁合金表面氨基酸等电点对生物矿化成膜厚度、耐蚀性能的影响机制。
英文摘要:
      Magnesium and its alloys possess good biocompatibility and mechanical property as absorbable biomedical metals. Their elastic modulus (45 GPa) is very close to that of the bone. However, the disadvantage of the alloys is the rapid degradation rate which can not satisfy the clinical applications. Surface modification is one of the choices for an improvement in the corrosion resistance of magnesium alloys. Chemical conversion is very convenient, effective, and low-cost. According to the reports, small bioorganic molecules such as amino acids can be applied to coat the surface of magnesium alloys with enhanced corrosion resistance and adhesion strength due to molecular recognition, spatial match, and electrostatic adsorption. Amino acids existing in the human body play a critical role in the biomineralization of degradable magnesium-based implants dependent on their molecular structures, type and length of chains, and isoelectric points (pI). Nevertheless, the material-bio-chemical interaction mechanism has not been understood yet.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20373118位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号