姚少科,孙辉磊,李正阳,蒋华臻.基于分形曲线的分区扫描策略对激光熔化沉积基板变形的影响[J].表面技术,2023,52(3):399-407.
YAO Shao-ke,SUN Hui-lei,LI Zheng-yang,JIANG Hua-zhen.Effect of Fractal-based Subarea Strategy on Substrate Deformation Produced by Laser Melting Deposition[J].Surface Technology,2023,52(3):399-407
基于分形曲线的分区扫描策略对激光熔化沉积基板变形的影响
Effect of Fractal-based Subarea Strategy on Substrate Deformation Produced by Laser Melting Deposition
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.03.038
中文关键词:  增材制造  激光熔化沉积  扫描策略  分形曲线  翘曲变形
英文关键词:additive manufacturing  laser melting deposition  scanning strategy  fractal curve  warpage deformation
基金项目:
作者单位
姚少科 中国科学院力学研究所 宽域飞行工程科学与应用中心,北京 100190;中国科学院大学 工程科学学院,北京 100049 
孙辉磊 河北科技大学 机械工程学院,石家庄 050018 
李正阳 中国科学院力学研究所 宽域飞行工程科学与应用中心,北京 100190 
蒋华臻 中国科学院力学研究所 宽域飞行工程科学与应用中心,北京 100190 
AuthorInstitution
YAO Shao-ke Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China 
SUN Hui-lei School of Mechanical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, China 
LI Zheng-yang Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
JIANG Hua-zhen Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究新型扫描策略,减小激光熔化沉积过程中基材的变形。方法 首先,采用分形曲线作为全域扫描策略,通过激光熔化沉积试验研究了1种传统扫描策略与3种分形扫描策略的基板变形。其次,提出将分形扫描策略和分区扫描策略相结合,按照分形曲线的走向扫描各个分区,形成基于分形曲线的分区扫描策略,通过激光熔化沉积试验研究了1种传统分区扫描策略与3种基于分形曲线的分区扫描策略的基板变形。结果 无论是全域扫描还是分区扫描,基板的4条边均发生了竖直向上的翘曲变形。在扫描路径的终点附近,基板的变形量最大。全域扫描策略下,基板的最大变形量分别为:光栅式扫描7.5 mm,Peano曲线3.3 mm,Sierpinski曲线2.5 mm,Lebesgue曲线3.8 mm。分区扫描策略下,基板的最大变形量分别为:光栅式顺序7.5 mm,Hilbert曲线顺序3.5 mm,Sierpinski曲线顺序3.2 mm,Lebesgue曲线顺序5.4 mm。结论 基于分形曲线的分区扫描策略可以显著减小基板变形,还可以灵活地调节扫描线段的方向和数量,在综合考虑扫描线设计的灵活性和变形量的情况下,基于Sierpinski曲线的分区扫描策略为最优策略。
英文摘要:
      Laser melting deposition is an advanced manufacturing technology that can manufacture complex structures. In laser melting deposition, localized heat source leads to massive residual stresses and pronounced deformations. To reduce the substrate deformation during laser melting deposition and improve the flexibility of processing, a novel scanning strategy based on fractal curve is proposed. Experiments are carried out with laser experimental platform which consists of a 1 kW fiber laser, a KUKA robot, a coaxial nozzle and a powder feeder. Argon is used as the shield gas. Substrate and powder are 316L stainless steel. The powder size is 50-100 μm. First, whole area scanning strategies are used in laser deposition process. The scanning strategies are raster, Peano curve, Sierpinski curve and Lebesgue curve. The substrate size is 130 mm×130 mm×5 mm. The deposited area size is 70 mm×60 mm. The laser spot diameter is 1.2 mm, the laser scanning speed is 5 mm/s, the laser power is 800 W, the powder feeding rate is 10.9 g/min. The substrate deformation of one traditional scanning strategy, i.e. the raster, and three scanning strategies with fractal curves is tested with steel ruler. Then, a combination of fractal scanning strategy and subarea scanning strategy is proposed, i.e. fractal-based subarea scanning strategy. Four kinds of subarea scanning strategies are used in the experiment. The deposited area is divided into 64 square subareas. The orders of subareas in different scanning strategies are raster order, Hilbert curve order, Sierpinski curve order and Lebesgue curve order. The substrate size is 130 mm×130 mm×5 mm. The deposited area size is 72 mm×72 mm. The square subarea size is 9 mm×9 mm. The laser spot diameter is 1.5 mm, the laser scanning speed is 5 mm/s, the laser power is 900 W, the powder feeding rate is 10.9 g/min. The substrate deformation of one traditional subarea scanning strategy, i.e. the raster order, and three subarea scanning strategies with fractal curves is tested with steel ruler. After the experiment, all four sides of the substrates have warped and deformed vertically upwards. The results show that the deformation at the end of laser scanning path is the largest in the case of whole area scanning strategy. Under scanning strategies on whole area, the maximum deformation of the substrate is:7.5 mm for raster, 3.3 mm for Peano curve, 2.5 mm for Sierpinski curve, 3.8 mm for Lebesgue curve, respectively. The average deformation of the substrate is:3.6 mm for raster, 1.6 mm for Peano curve, 1.4 mm for Sierpinski curve, 1.9 mm for Lebesgue curve, respectively. Under different subarea scanning strategies, the maximum deformation of the substrate is:7.5 mm for raster order,3.5 mm for Hilbert curve order, 3.2 mm for Sierpinski curve order, 5.4 mm for Lebesgue curve order, respectively. The average deformation of the substrate is:3.7 mm for raster order, 2.1 mm for Hilbert curve order, 2.3 mm for Sierpinski curve order, 2.3 mm for Lebesgue curve order, respectively. The conclusion is subarea scanning strategy based on fractal curve can significantly reduce substrate deformation and adjust line segments flexibly. The minimum deformation among the subarea scanning strategies is that of Sierpinski curve order, which may be the optimal.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19944618位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号