黄明吉,刘圣艳,乔小溪,陈平,刘中海,张晓昊.离心泵仿生微结构叶片减阻特性的仿真研究[J].表面技术,2023,52(2):196-205.
HUANG Ming-ji,LIU Sheng-yan,QIAO Xiao-xi,CHEN Ping,LIU Zhong-hai,ZHANG Xiao-hao.Simulation Study on the Drag Reduction of Centrifugal Pump with Bionic Micro-structured Blade[J].Surface Technology,2023,52(2):196-205
离心泵仿生微结构叶片减阻特性的仿真研究
Simulation Study on the Drag Reduction of Centrifugal Pump with Bionic Micro-structured Blade
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.02.017
中文关键词:  离心泵  仿生微结构  减阻  湍流动能  数值模拟
英文关键词:centrifugal pump  bionic microstructure  drag reduction  turbulence kinetic energy  numerical simulation
基金项目:国家重点研发计划(2018YFC0810500);国家自然科学基金(51975042、51905032);中央高校基本业务费(FRF-TP-19-004A3)
作者单位
黄明吉 北京科技大学 机械工程学院,北京 100083 
刘圣艳 北京科技大学 机械工程学院,北京 100083 
乔小溪 北京科技大学 机械工程学院,北京 100083 
陈平 北京科技大学 机械工程学院,北京 100083 
刘中海 长沙迪沃机械科技有限公司,长沙 410205 
张晓昊 清华大学天津高端装备研究院,天津300300 
AuthorInstitution
HUANG Ming-ji School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
LIU Sheng-yan School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
QIAO Xiao-xi School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
CHEN Ping School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 
LIU Zhong-hai Dewater Technology, Changsha 410205, China 
ZHANG Xiao-hao Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin 300300, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过在离心泵叶片表面布置仿生微结构实现离心泵的减阻,并获得仿生微结构的最优化设计参数。方法 研究利用仿真模拟的方法,采用离心泵的扭矩变化对其减阻性能进行表征,考虑了仿生微结构的形态、截面形状和特征高度等结构参数的影响规律,通过分析叶片表面的湍流动能、剪切应力和近壁面层的速度云图揭示仿生微结构对离心泵减阻特性的影响机理。结果 在3种微结构形态中,流向沟槽的减阻效果最好;在3种截面形状的微结构中,矩形截面的减阻效果最好;离心泵减阻率并非随微结构特征尺寸单调变化,而是存在最优值;所有微结构的减阻率均随着流量的增加而增加。当叶片表面布置流向、矩形沟槽时离心泵具有最优的减阻效果,且在全流量工况范围流向矩形沟槽结构的最大减阻率为8.39%。结论 叶片表面微结构的布置可以实现离心泵减阻,其减阻机理与近壁面流体流动行为有关。表面微结构可有效降低叶片壁面的速度梯度,使速度沿壁面法线方向过渡更加均匀,且微结构内部低速流体层可有效控制和减弱近壁面区的湍动程度,减少湍流动能损耗;同时微沟槽内的反向涡流具有类“滚动轴承”作用,将滑动摩擦转换为滚动摩擦,降低摩擦阻力。
英文摘要:
      Centrifugal pump plays an important role in dealing with the water flooding accident in a coal mine. However, it has disadvantages of high mechanical loss and low energy utilization efficiency. Thus, studying the drag reduction performance of a centrifugal pump is essential. Not only it can save energy, but also can improve the pump stability. Here the drag reduction of the centrifugal pump is realized by arranging bionic microstructures on the centrifugal pump blade surfaces, and the optimal design parameters are obtained. In the paper, the influence rules and mechanisms of the bionic microstructures on the drag reduction of the pump are investigated by simulation method, and the variations in the impeller working torques caused by the bionic microstructures, compared to that of the pump with smooth blade surfaces, are used to characterize the drag reduction ratio. The effects of the arrangement, shape, and height size of the bionic microstructures are considered. And the microstructures are arranged on the outlet of the blade suction surfaces with an area ratio of 13%. Results show that in the three arrangements of vertical rib, vertical groove, and parallel groove, the parallel groove has the highest drag reduction ratio. And for all the flow rates analyzed, all the parallel grooves with different cross-section shapes can realize drag reduction. In the three shapes of triangle, semicircle, and rectangle, the rectangular shape has the best drag reduction performance. The drag reduction ratio does not change monotonically with the microstructure height increasing. For the three heights analyzed, all the three kinds of microstructures with h=0.5 mm have the largest drag reduction ratio. For all bionic micro-structured surfaces, their drag reduction ratios increase with the flow rate increasing. For all conditions, the blade surface with a parallel rectangular groove has the highest drag reduction percentage of 8.39%. The bionic microstructures arranged on the blade surface will inevitably influence the flowing behaviors, especially for the near-surface fluid layer. The flow resistances are mainly caused by the frictional resistance and the differential pressure resistance. The friction resistance is composed of the viscous shear stress and the turbulent Reynolds stress, which are closely related to the flowing behaviors. In the paper, the path line figure near the blade surface, as well as the nephogram of velocity, turbulence kinetic energy, and shear stress are used to analyze the influence rules and mechanisms. The low-speed fluid layer trapped in the microstructures can effectively control and weaken the turbulence of the near-surface fluid layer, thus reducing the turbulent kinetic energy loss. Meanwhile, there are obvious reverse flow vortices in the microgrooves as shown in the path line figure. The reverse flow vortex can work as a "rolling bearing", which transforms the sliding friction into the rolling friction, thus reducing the fluid friction resistance. The low-speed fluid layer trapped in the microstructures can also increase the effective thickness of the boundary viscous layer and decrease the velocity gradient of the near-surface layer, resulting in lower surface frictional resistance. This research provides theoretical guidance for reducing energy loss of the centrifugal pump by using the bionic microstructure surface.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20109013位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号