张毅勇,井致远,张志彬,梁秀兵.氮含量对Mo-Ta-W-N多主元合金氮化物薄膜的影响[J].表面技术,2023,52(1):21-28.
ZHANG Yi-yong,JING Zhi-yuan,ZHANG Zhi-bin,LIANG Xiu-bing.Effects of Nitrogen Content on Mo-Ta-W-N Multi-principal Alloy Nitride Thin Films[J].Surface Technology,2023,52(1):21-28
氮含量对Mo-Ta-W-N多主元合金氮化物薄膜的影响
Effects of Nitrogen Content on Mo-Ta-W-N Multi-principal Alloy Nitride Thin Films
  
DOI:10.16490/j.cnki.issn.1001-3660.2023.01.002
中文关键词:  多主元合金  氮化物  薄膜  反应多靶磁控溅射  组织结构  力学性能
英文关键词:multi-principal alloy  nitride  thin film  reaction multi-target magnetron sputtering  structure  mechanical property
基金项目:国家自然科学基金项目(51975582、52275225);北京市自然科学基金项目(2212055)
作者单位
张毅勇 军事科学院 国防科技创新研究院,北京 100071 
井致远 军事科学院 国防科技创新研究院,北京 100071 
张志彬 军事科学院 国防科技创新研究院,北京 100071 
梁秀兵 军事科学院 国防科技创新研究院,北京 100071 
AuthorInstitution
ZHANG Yi-yong Defense Innovation Institute, Academy of Military Science, Beijing 100071, China 
JING Zhi-yuan Defense Innovation Institute, Academy of Military Science, Beijing 100071, China 
ZHANG Zhi-bin Defense Innovation Institute, Academy of Military Science, Beijing 100071, China 
LIANG Xiu-bing Defense Innovation Institute, Academy of Military Science, Beijing 100071, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究氮含量对MoTaW多主元合金薄膜的微观组织和力学性能的影响,并提高Mo-Ta-W多主元合金薄膜的力学性能。方法 采用反应多靶磁控溅射技术在单晶硅片上制备出了具有不同氮含量的Mo-Ta-W-N多主元合金氮化物薄膜,通过X射线光电子能谱仪、掠入射角X射线衍射、场发射扫描电子显微镜、原子力显微镜对薄膜的成分、组织结构、表面及截面微观形貌、厚度和粗糙度进行了表征分析,并采用纳米压痕仪对薄膜的硬度和弹性模量进行了测试。结果 Mo-Ta-W-N多主元合金氮化物薄膜中的氮含量随着溅射过程中氮气流量的增加而增加,当氮气流量达到50%时,薄膜中的氮含量升至49%,而钽含量则随之降低至12%。形成氮化物后,Mo-Ta-W多主元薄膜由BCC结构转变成了单相FCC固溶体结构,表面由层片状结构转变为花椰菜状团簇结构,随着氮含量的增加,表面的粗糙度先降低后升高,厚度则不断降低。与Mo-Ta-W多主元合金薄膜相比,Mo-Ta-W多主元合金氮化物薄膜的力学性能有所提高,但随着氮含量的增加而下降,当氮气流量为10%时,Mo-Ta-W-N多主元合金氮化物薄膜的硬度和弹性模量分别为34.3 GPa和327.5 GPa。结论 氮化物的形成对Mo-Ta-W多主元合金薄膜的相结构、表面形貌等有影响,可有效提高薄膜的力学性能。
英文摘要:
      Due to the particularity of composition, multi-principal alloy shows many superior performances, such as higher strength and hardness, better wear and corrosion resistance, and better oxidation resistance at high temperature, so it has been extensively studied in recent decades. Due to the limitation of thickness, the mechanical properties of multi-principal alloy films are even higher than those of multi-principal alloy with the same composition. By adding carbon, nitrogen, oxygen and other non-metallic elements into the multi-principal alloy, the performance of multi-principal compound thin film has been further improved. The aim of this study was to investigate the effect of nitrogen content on the microstructure and mechanical properties of MoTaW multi-principal alloy films, and to improve the mechanical properties of Mo-Ta-W multi-principal alloy thin films. In this paper, Mo-Ta-W-N multi-principal alloy nitride films with different nitrogen content were prepared on monocrystal silicon by reactive multi-target magnetron sputtering technique. The composition, element content, structure, microscopic morphology of surface and section, thickness, and roughness of Mo-Ta-W-N multi-principal alloy nitride films were characterized using X ray photoelectron spectroscope, grazing incident Angle X-ray diffraction, field emission scanning electron microscope, atomic force microscope. The hardness and elastic modulus of Mo-Ta-W-N multi-principal alloy nitride films were tested using nano indentation apparatus. The nitrogen content of Mo-Ta-W-N multi-principal alloy nitride film increased with the increase of nitrogen flow rate during sputtering. When the nitrogen flow rate reached 50%, the nitrogen content in the film increased to 49%, while the tantalum content decreased to 12%. The decrease of tantalum content is mainly due to the toxic phenomenon of target material. The bindings of Ta-N and Mo-N, but not W-N, were found in the nitride film. After the formation of nitride, Mo-Ta-W multi-principal component film changed from BCC structure to single-phase FCC solid solution structure, and its surface changed from lamellar structure to cauliflower-like cluster structure. Each cluster was composed of smaller particles. With the increase of nitrogen flow rate, the surface particle size of the film decreased first and then increased. When the nitrogen flow rate was 50%, the cross section of Mo-Ta-W-N nitride had a double-layer structure, and a compact featureless amorphous layer was formed near the base. With the increase of nitrogen content, the roughness of the surface decreased first and then increased, while the thickness decreased continuously. Compared with Mo-Ta-W multi-principal alloy film, the mechanical properties of Mo-Ta-W multi-principal element alloy nitride film were improved. The mechanical properties of Mo-Ta-W multi-principal alloy nitride film are enhanced for the following reasons. First, after nitrogen is introduced into the film, stronger covalent bonds are formed between metal elements and nitrogen, and the bond energy is much greater than that of metal bonds. Second, the addition of nitrogen as an interstitial atom also cause serious lattice distortion effect of the film, resulting in more significant solution strengthening effect. However, the mechanical properties of the films decreased with the increase of nitrogen content, mainly because the denseness of the films decreased with the further increase of nitrogen flow rate and the enhancement of re-sputtering effect. When the nitrogen flow rate was 10%, the hardness and elastic modulus of Mo-Ta-W-N multi-principal alloy nitride film were 34.3 GPa and 327.5 GPa, respectively.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19514273位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号