张祥,马小刚,韩冰.基于无理数转速比的导磁轴套磁粒研磨试验[J].表面技术,2022,51(12):269-276.
ZHANG Xiang,MA Xiao-gang,HAN Bing.Magnetic Particle Grinding Test of Permeable Bushing Based on Irrational Rotational Speed Ratio[J].Surface Technology,2022,51(12):269-276
基于无理数转速比的导磁轴套磁粒研磨试验
Magnetic Particle Grinding Test of Permeable Bushing Based on Irrational Rotational Speed Ratio
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.12.027
中文关键词:  无理数转速比  有理数转速比  研磨轨迹  磁粒研磨  响应面法  导磁轴套
英文关键词:irrational number speed ratio  rational speed ratio  grinding trajectory  magnetic abrasive grinding  response surface method  magnetic bushing
基金项目:国家自然科学基金(51775258);辽宁省自然科学基金重点项目(20170540458);精密与特种加工教育部重点实验室基金(B201703)
作者单位
张祥 辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051 
马小刚 辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051 
韩冰 辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051 
AuthorInstitution
ZHANG Xiang School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Liaoning Anshan 114051, China 
MA Xiao-gang School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Liaoning Anshan 114051, China 
HAN Bing School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Liaoning Anshan 114051, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决大型导磁类零件内表面的精密研磨加工困难、加工效率低等问题。方法 采用旋转磁极方法对内表面进行磁粒研磨。工件由车床主轴驱动旋转,将磁极伸入工件内部,并在电机驱动旋转的同时,随着车床刀架往复进给,驱使磁极与工件内表面之间填充的磁性磨粒摩擦工件表面,完成对工件内表面的光整加工。利用ADAMS软件对有理数和无理数转速比下的研磨轨迹进行模拟,讨论不同转速比对研磨轨迹和工件表面质量的影响;采用响应面法将影响研磨的主要工艺参数(工件转速、磁极转速、磁性磨粒粒径)进行优化设计;通过研磨试验分析表面形貌和表面粗糙度数据,验证优化后工艺参数的可靠性。结果 采用响应面法分析可知,当工件转速为98 r/min、磁极转速为2 435 r/min、磁性磨粒粒径为190 μm、磁粒研磨加工时间为40 min时,工件的表面粗糙度从原始Ra 3.32 μm降至Ra 0.198 μm,表面粗糙度改善率(ΔRa)为94.04%。工件表面划痕、加工纹理等表面缺陷得到了有效去除,加工后工件表面更加光亮、均匀,大幅提高了工件的使用寿命。结论 当磁极与工件的转速比为无理数时,其研磨效果最好,研磨轨迹的干涉效果更好,单位面积内的交错次数更多,交织出的网状结构网格更均匀、致密,未加工区域面积更小。采用响应面法能够对试验结果进行优化参数数学建模设计,拟合出的最佳工艺参数组合可提高大型导磁材料轴套类零件的加工效率和表面质量。
英文摘要:
      The work aims to solve the problems of difficult processing and low processing efficiency encountered in the precision grinding process of the inner surface of large magnetic conductive parts. The inner surface was ground with magnetic particles by the rotating magnetic pole method. The workpiece was driven to rotate by the spindle of the lathe, and the magnetic pole extended into the workpiece and fed back and forth with the lathe tool rest while driven by the motor to rotate. The magnetic abrasive particles filled between the magnetic pole and the inner surface of the workpiece were driven to rub the workpiece surface to complete the finishing process of the inner surface. ADAMS software was used to simulate the grinding trajectory under rational and irrational speed ratios. The effects of different rational and irrational speed ratios on grinding trajectory and workpiece surface quality were discussed respectively. The main process parameters (workpiece speed, magnetic pole speed and magnetic particle size) affecting the grinding were optimized by response surface method. The surface morphology and surface roughness data were analyzed by grinding test to verify the reliability of the optimized process parameters. From the response surface analysis, when the workpiece speed was 98 r/min, the magnetic pole speed was 2 435 r/min, the magnetic particle size was 190 μm, and the magnetic particle grinding time was 40 min, the workpiece surface roughness decreased greatly, and the surface roughness decreased from Ra 3.32 μm to Ra 0.198 μm. The surface roughness improvement rate (ΔRa) was 94.04%. The surface defects such as scratches and processing textures on the workpiece surface after grinding under irrational speed ratio were effectively removed, and the processed surface was brighter and more uniform, which could greatly improve the service life of the workpiece. When the ratio of the magnetic pole speed to the workpiece speed is a rational integer, the grinding effect is the best, the interference effect of grinding trajectory is better, the number of interlacing times per unit area is more, the interwoven mesh is more uniform and dense, and the area of unprocessed area is smaller. Response surface method can be used to optimize the mathematical modeling design of the test results, and the best combination of process parameters can improve the processing efficiency and surface quality of large-scale magnetically conductive shaft bushing parts.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第20101786位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号