金玉花,程融,柴利强,张学希,王鹏.反应磁控溅射制备CrN涂层的热稳定性[J].表面技术,2022,51(12):82-90, 108.
JIN Yu-hua,CHENG Rong,CHAI Li-qiang,ZHANG Xue-xi,WANG Peng.#$NP Thermal Stability of CrN Coatings Prepared by Reactive Magnetron Sputtering[J].Surface Technology,2022,51(12):82-90, 108
反应磁控溅射制备CrN涂层的热稳定性
#$NP Thermal Stability of CrN Coatings Prepared by Reactive Magnetron Sputtering
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.12.007
中文关键词:  CrN涂层  反应磁控溅射  热稳定性  氧化行为  释放  扩散阻挡
英文关键词:CrN coating  reactive magnetron sputtering  thermal stability  oxidation behavior  release  diffusion barrier
基金项目:国家自然科学基金(51865028);国家自然科学基金青年项目(52005483)
作者单位
金玉花 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050 
程融 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000 
柴利强 中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000 
张学希 中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000 
王鹏 中国科学院兰州化学物理研究所 固体润滑国家重点实验室,兰州 730000 
AuthorInstitution
JIN Yu-hua State Key Laboratory of Advanced Processing and Reuse of Non-ferrous Metals Jointly Established by the Ministry and Province , Lanzhou University of Technology, Lanzhou 730050, China 
CHENG Rong State Key Laboratory of Advanced Processing and Reuse of Non-ferrous Metals Jointly Established by the Ministry and Province , Lanzhou University of Technology, Lanzhou 730050, China;State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
CHAI Li-qiang State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
ZHANG Xue-xi State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
WANG Peng State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 研究了真空、大气2种环境下CrN涂层的热稳定性与氧化行为。方法 采用反应磁控溅射技术在(100)取向的P型单晶硅基底上制备了CrN涂层。利用真空热脱附谱(TDS)、场发射扫描电子显微镜(FESEM)、拉曼光谱(Raman)、X射线衍射(XRD)和扫描电子显微镜(SEM)以及加装的能谱仪(EDS)等表征方法,研究了在不同温度下涂层的热稳定性与氧化行为。结果 在真空退火时,TDS结果表明CrN涂层中的N在664 ℃左右开始释放,在温度达到1 000 ℃时释放结束。而在温度高于900 ℃时释放速率和释放量开始迅速上升,在温度达到930 ℃时达到峰值。在加热过程中,涂层中的CrN相部分转变为Cr2N相,在温度达到1 000 ℃时,完全转变为CrSi2相。在大气环境中,当温度达到700 ℃时,涂层开始被氧化,涂层表面生成了一层约136 nm厚的致密氧化层,同时在氧化层下方生成了一层CrOxN1‒x的过渡层,并且涂层也出现了Cr2O3的拉曼峰。当温度达到800 ℃时,Cr2O3氧化物拉曼峰和衍射峰的数量和强度显著增加,说明涂层表面生成的氧化物的结构由简单变为复杂,并且结晶性增强。此外,氧化物颗粒逐渐长大,氧化层厚度增加,在温度达到850 ℃时,氧化层厚度达到429 nm。当温度高于700 ℃时,CrN涂层沿着厚度方向的元素扩散行为是O元素的向内扩散和N、Cr元素的向外扩散,并且释放的N在氧化层下方富集,并没有释放出去。结论 CrN涂层在真空中的热稳定性在900 ℃左右,在大气中的热稳定性在700 ℃左右。在大气中致密的Cr2O3氧化层的形成对O元素的向内扩散和N、Cr元素的向外扩散具有很好的阻挡作用。氧化层的这种阻挡作用对涂层的内部起到保护作用,延缓了涂层进一步的氧化和分解,这是CrN涂层热稳定性较好的原因。
英文摘要:
      In this work, the thermal stability and oxidation behavior of CrN coating were studied in vacuum and atmosphere. The composition and structure changes of CrN coating in different environments at high temperature were investigated. Then, the influence of such composition and structure changes on the performance of the coating was study. These results can provide experimental and theoretical basis for the development of multiple coatings with higher thermal stability in the future, and ultimately improve the performance of CrN coating at high temperature. The CrN coatings were prepared by reactive magnetron sputtering on (100) oriented P-type monocrystalline silicon substrate. The vacuum thermal desorption spectroscopy (TDS), field emission scanning electron microscopy (FESEM), Raman spectroscopy (Raman), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the thermal stability and oxidation behavior of the CrN coating at different temperatures. The release of N from CrN coating begins at about 664 ℃ and that ends at about 1 000 ℃. Once the temperature is higher than 900 ℃, the release rate of N increases rapidly and that increases to maximum when the temperature rises to 930 ℃. During the heating process, the crystal structure of the coating partially changes from CrN to Cr2N. It should be noted that it completely transforms into CrSi2 phase when the temperature reaches 1 000 ℃. The formation of CrSi2 can be attributed to the release of N, leading to the coating loose. Further, a lot of vacancies generates in the coating, which provide a diffusion channel for the element of Si in the substrate. Thus, the Si in the substrate diffuses to the inside of the coating under the thermal driving effect, and forms a CrSi2 phase by bonding with Cr in the coating. In the atmosphere, the coating begins to oxidize when the temperature increases to 700 ℃, and a dense oxide layer with a thickness of 136 nm is formed on the coating surface. Besides, a transition layer of CrOxN1‒x is formed below the oxide layer, and the peak of Cr2O3 appears in the Raman spectra. When the temperature reaches 800 ℃, the number and intensity of Raman and diffraction peaks of Cr2O3 oxide increase significantly, which means that there are lots of oxide formed on the coating surface and the crystallinity of coating increase. In addition, the oxide particles gradually grow and the oxide layer thickness increases with the increase of temperature. The thickness of oxide layer increases to 429 nm at 850 ℃. When the temperature is higher than 700 ℃, the element diffusion behavior of CrN coating along the thickness direction is the inward diffusion of O element and the outward diffusion of N and Cr element. Note that the released N is enriched below the oxide layer and that not released from the coating. The CrN coating is stable when the temperature is lower than 900 ℃ in vacuum, and that is stable when the temperature is lower than 700 ℃ in atmosphere. The formation of dense Cr2O3 oxide layer in the atmosphere has a diffusion blocking effect for the inward diffusion of O elements and the outward diffusion of N and Cr elements. This blocking effect of the oxide layer protects the interior of the coating and delays the further oxidation of the coating during heating. This is the mean reason for the better thermal stability of CrN coating. The density of Cr2O3 oxide layer formed at high temperature is very important for improving the thermal stability of inner nitride coatings and the oxidation resistance. So, it is possible to further improve the thermal stability and oxidation resistance of binary nitride coatings by adding elements such as chromium, giving rise to a dense oxide layer formed in the binary nitride coatings.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19513122位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号