莫丽,冯满,陈行,郭振兴.椭圆歧型三通冲蚀磨损数值模拟[J].表面技术,2022,51(9):151-159.
MO Li,FENG Man,CHEN Hang,GUO Zhen-xing.Numerical Simulation of Erosion Wear of Oval Disproportionate Tee[J].Surface Technology,2022,51(9):151-159
椭圆歧型三通冲蚀磨损数值模拟
Numerical Simulation of Erosion Wear of Oval Disproportionate Tee
  
DOI:10.16490/j.cnki.issn.1001-3660.2022.09.015
中文关键词:  高压管汇  冲蚀磨损  椭圆截面  歧型三通管  数值模拟
英文关键词:high pressure manifolds  erosion wear  elliptic section  disproportionate tee  numerical simulation
基金项目:四川省省院省校科技合作研发项目(21SYSX0054)
作者单位
莫丽 西南石油大学 机电工程学院,成都 610500;石油天然气装备技术四川省科技资源共享服务平台,成都 610500 
冯满 西南石油大学 机电工程学院,成都 610500 
陈行 西南石油大学 机电工程学院,成都 610500 
郭振兴 西南石油大学 机电工程学院,成都 610500 
AuthorInstitution
MO Li School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China;Sichuan Province Science and Technology Resource Sharing Service Platform for Petroleum and Natural Gas Equipment Technology, Chengdu 610500, China 
FENG Man School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
CHEN Hang School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
GUO Zhen-xing School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 解决石油化工行业中高压三通管汇因冲蚀磨损导致失效率高的问题,降低石油化工生产中的不可控成本,提高歧型三通管的使用寿命和管汇区的安全系数。方法 采用 模型,基于固–液两相流冲蚀理论建立椭圆截面歧型三通管冲蚀磨损数值模拟模型,预测椭圆截面歧型三通管在工作时发生冲蚀磨损的几何位置。研究椭圆截面歧型三通管的椭圆形状和方位夹角对管道最大冲蚀率的影响,对比i=0.85时的椭圆截面和i=1时的普通圆截面2种歧型三通管在不同质量流率、颗粒直径、液体流量、流体黏度下对管道最大冲蚀率的影响。结果 夹角为60°时,管道最大冲蚀率最大,夹角为50°和70°时,管道最大冲蚀率比较接近,夹角为40°时,管道最大冲蚀率最小。不同夹角时均满足:当i由0.76增大至1过程中,管道最大冲蚀率先缓慢减小,后迅速增大,在i=0.85附近有最小值,最大值比最小值增大3.66倍;i=1减小至i=0.76过程中,相贯线处冲蚀率逐渐减小,主管中部的冲蚀率逐渐增加,且冲蚀区域逐渐由主管中部转移到主管上部,冲蚀最严重的区域由相贯线处转变为相贯线附近的回旋涡流区(低流速区)。i=1时,在不同固相颗粒质量流率和主管流量下,最大冲蚀率均明显大于i=0.85时的,增大倍数分别为1.9倍和1.93倍;在不同固相颗粒直径和流体黏度下,最大冲蚀率均明显大于i=0.85时的,增大倍数分别为2.74倍和2.36倍。结论 椭圆截面歧型三通管i值由0.76增大到1过程中,最大冲蚀率先减小后增大,且在i=0.85附近有最小值;i=0.85时,最大冲蚀率在不同工况下的变化趋势与i=1时基本一致,但冲蚀率的降低效果十分显著。
英文摘要:
      To solve the problem of high failure rate of high-pressure tee manifolds in the petrochemical industry due to erosion and wear, reduce uncontrollable costs in petrochemical production, and increase the service life of disproportionate tee manifolds and the safety factor of the manifold area. Based on the erosion theory of solid-liquid two-phase flow, a numerical simulation model of erosion and wear of the elliptical cross-section disproportionate tee is established to predict the geometric location of erosion and wear of the elliptical cross-section disproportionate tee during operation. Study the influence of the elliptical shape and azimuth angle of the elliptical cross-section disproportionate tee on the maximum erosion rate of the pipeline. Compare the elliptical cross-section when i=0.85 and the ordinary circular cross-section when i=1. The two manifold three-way pipes are different influence of mass flow rate, particle diameter, liquid flow rate, and fluid viscosity on the maximum erosion rate of the pipeline. The experimental results found that when the included angle is 60°, the maximum erosion rate of the pipeline is the largest. When the included angle is 50° and 70°, the maximum erosion rate of the pipeline is relatively close. When the included angle is 40°, the maximum erosion rate of the pipeline is the smallest; The included angles are all satisfied:when i increases from 0.76 to 1, the maximum erosion rate of the pipeline decreases slowly at first and then increases rapidly. There is a minimum near i=0.85, and the maximum is 3.66 times larger than the minimum; In the process of i=1 decreasing to i=0.76, the erosion rate at the intersecting line gradually decreases, the erosion rate in the middle of the main pipe gradually increases, and the erosion area gradually shifts from the middle of the main pipe to the upper part of the main pipe, with the most severe erosion The area changes from the intersecting line to the swirling vortex area near the intersecting line (low velocity area); when i=1, under different solid particle mass flow rates and main flow rates, the maximum erosion rate is significantly greater than i=0.85, The increase times were 1.9 times and 1.93 times respectively; when i=1, under different solid particle diameters and fluid viscosities, the maximum erosion rate was significantly greater than i=0.85, and the increase times were 2.74 times and 2.36 times, respectively. The following conclusions are drawn when the i value of the elliptical cross-section disproportionate tee increases from 0.76 to 1, the maximum erosion rate first decreases and then increases, and there is a minimum near i=0.85; when i=0.85, the maximum erosion The changing trend of the erosion rate under different working conditions is basically the same as that when i=1, but the reduction effect of the erosion rate is very significant.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第19951001位访问者    渝ICP备15012534号-3

版权所有:《表面技术》编辑部 2014 surface-techj.com, All Rights Reserved

邮编:400039 电话:023-68792193传真:023-68792396 Email: bmjs@surface-techj.com

渝公网安备 50010702501715号